Carl Pomerance* (carlp@lucent.com), Bell Labs - Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ 07974. Towards an Artin conjecture for composites. Preliminary report.
The strong form of Artin's famous conjecture on primitive roots is that if integer a is not -1 nor a square, then there is a positive proportion of prime numbers which have a as primitive root. Hooley has proved this conditional on the GRH. We export the concept of primitive root to composite moduli as follows: a is a "primitive root" for n if a is coprime to n and the multiplicative order of a modulo n is the maximum of all multiplicative orders modulo n. Let $\mathcal{R}(a)$ denote the set of such numbers n. It is tempting to conjecture that if a lies outside some small exceptional set, then the set $\mathcal{R}(a)$ has positive asymptotic density. However, Shuguang Li has shown this is not true: each set $\mathcal{R}(a)$ has lower density $0 . \mathrm{Li}$ conjectured though that for a outside a small and explicit exceptional set, $\mathcal{R}(a)$ has positive upper density. In this talk I discuss an approach for Li's conjecture that is conditional on the GRH. (Received September 26, 2000)

