Melanie E. Wood* (mew2@duke.edu), 2639 Andy Drive, Indianapolis, IN 46229. P-orderings: the metric viewpoint and the non-existence of simultaneous orderings in imaginary quadratic number rings.
We investigate P-orderings of arbitrary subsets X of a Dedekind ring R, which are used to generalize the notion of "factorial" to a more abstract setting. Many classical number theoretical results can be extended to Dedekind rings using generalized factorials, and in this paper, we consider P-orderings from the viewpoint of the P-adic metric on R in order to develop several results that help find P-orderings and thus generalized factorials. It turns out that the P-orderings of X depend on the closure of X in \hat{R}_{p}. When R^{\prime} and R are Dedekind Domains and R^{\prime} is the integral closure of R in a finite, separable extension of the fraction field of R, we can relate the P-orderings of R and R^{\prime}. We examine the idea of P-ordering "primes" in a PID number ring. Lastly, we investigate orderings that are simultaneously P-orderings for all prime ideals $P \subset R$, and show that these simultaneous orderings do not exist for imaginary quadratic number rings, a result that is conjectured for all number rings other than the integers. (Received September 29, 2000)

