962-13-1132 **Thomas G. Lucas*** (tglucas@email.uncc.edu), Department of Mathematics, University of North Carolina Charlotte, Charlotte, NC 28223. *Rings, conditional expectations and localizations*. Preliminary report.

Let $R \subset S$ be a pair of reduced rings with the same identity where the total quotient ring of each is von Neumann regular. Let $E_R(E_S)$ denote the set of idempotents of R(S) and assume that each element $r \in R$ $(s \in S)$ can be written in the form r = et (s = fv) for some regular element $t \in R$ $(v \in S)$ and some idempotent $e \in E_R$ $(f \in E_S)$. For a pair of idempotents e and f, set $e \leq f$ if ef = e. An R-module homomorphism $\varphi : S \to R$ is said to be a "conditional expectation" if (i) for $f \in E_S$, $\varphi(f) = 0$ implies f = 0, and (ii) if $\varphi(sf) = 0$ for each $f \in E_S$, then s = 0. Assume such a mapping exists. Then for each $f \in E_S$ there is a unique pair of idempotents f^{\sharp} , $f_{\sharp} \in E_R$ such that (i) $f_{\sharp} \leq f \leq f^{\sharp}$, (ii) $g \in E_R$ with $f \leq g$ implies $f^{\sharp} \leq g$, and (iii) $h \in E_R$ with $h \leq f$ implies $h \leq f_{\sharp}$. Fix $f \in E_S$ and set $t = \varphi(f) + (1 - f^{\sharp})$. Let $T = \{t^n | n \geq 0\}$ and say that f "localizes" R if $fS_T = fR_T$. Several equivalent conditions will be given. Examples will be drawn from rings of L^{∞} functions of comparable complete probability measures. (Received October 02, 2000)