962-14-985 Frank D. Calegari* (fcale@math.berkeley.edu), Department of Mathematics, University of California, 1075 Evans Hall, Berkeley, CA 94720-3840. Mysterious formulae involving the numbers of points in some families of elliptic curves.
In this talk I will present a solution to a problem posed by N. Katz at the 2000 AWS. Let $p>3$ be prime. Consider elliptic curves $E: y^{2}=4 x^{3}-g_{2} x-g_{3}$ over \mathbf{F}_{p} with discriminant $g_{2}^{3}-27 g_{3}^{2}=1$. Sum the Hasse invariants of these (finitely many) curves, and call the answer $B(p)$. If $p \equiv 3 \bmod 4$, then $B(p)=0$. If $p \equiv 1 \bmod 4$, and if we write p as the sum of two squares $a^{2}+b^{2}$ with b odd, then:

$$
B(p)=2\left(4 b^{2}-a^{2}\right)
$$

(Received September 29, 2000)

