962-30-756 Stephanie P. Edwards* (sedwards@bemidjistate.edu), Department of Mathematics \& Computer Science, Bemidji State University, 1500 Birchmont Drive NE, Bemidji, MN 56601, and Simon Hellerstein (hellerst@math.wisc.edu). Non-real Zeros of Derivatives of Real Entire Functions and the Pólya - Wiman Conjectures. Preliminary report.
A function f is in the class $V_{2 p}$ iff $f(z)=e^{-a z^{2 p+2}} g(z)$ where $a \geq 0$ and g is a constant multiple of a real entire function of genus $\leq 2 p+1$ with only real zeros. The class $U_{2 p}$ is defined as follows: $U_{0}=V_{0}, \quad U_{2 p}=V_{2 p}-V_{2 p-2}$. Functions in the class $U_{2 p}^{*}$ are represented as $g(z)=c(z) f(z)$ where $f \in U_{2 p}$ and c is a real polynomial with no real zeros. Every real entire function g, of finite order with at most finitely many non-real zeros satisfies $g \in U_{2 p}^{*}$ for a unique p. We show, for a subclass of $f \in U_{2 p}$, necessary and sufficient conditions for $f^{\prime \prime}$ to have exactly $2 p$ non-real zeros. For a subclass of $U_{2 p}^{*}$ we show that if f^{\prime} has only real zeros, then $f^{\prime \prime}$ has exactly $2 p$ non-real zeros. For $f \in U_{2 p}^{*}$ we show that $2 p$ is a lower bound for the number of non-real zeros of $f^{(k)}$ for $k \geq 2$. (Received September 25, 2000)

