Olivier R Espinosa* (espinosa@fis.utfsm.cl) and Victor H Moll (vhm@math.tulane.edu).

On some definite integrals involving the Hurwitz Zeta Function.

Using the Fourier series expansion of the Hurwitz Zeta Function $\zeta(z,q)$, we establish the formula

$$\int_0^1 \zeta(z',q)\zeta(z,q)dq = -\zeta(z+z'-1)B(1-z,1-z') \frac{\cos(\pi(z-z')/2)}{\cos(\pi(z+z')/2)},$$

valid for $\Re(z)$, $\Re(z') \leq 0$, where $\zeta(s)$ is the Riemman Zeta function and B(x,y) is the Beta function. As special cases of this formula we obtain a series of integral formulae involving the Bernoulli polynomials, $\log \Gamma(q)$ and $\log \sin(\pi q)$. (Received September 22, 2000)