962-39-713 Bruce R. Ebanks* (ebanks@math.msstate.edu), Department of Mathematics \& Statistics, 410 Allen Hall, Mississippi State University, Mississippi State, MS 39762. On Non-homogeneous Cauchy Difference Equations of a Special Type.
A problem posed at the 37 th International Symposium on Functional Equations in May 1999 concerns equations of the form $C f(x, y)=b f(R(x, y))$, for given rational functions $R$ and for $b$ equal to 1 or -1 , where $C$ is the Cauchy difference operator defined by $C f(x, y)=f(x+y)-f(x)-f(y)$. Here the unknown $f$ is a real-valued function on the positive reals. The problem is to determine which rational functions $R$ admit nontrivial solutions of the equation. The author generalized the problem to $C f(x, y)=g(R(x, y))$ for two unknown functions $f$ and $g$. Sufficient conditions for the existence of nontrivial solutions have been found, and these conditions include most (if not all) known results on equations of this type for positive real $x$ and $y$. (Received September 22, 2000)

