962-39-780 Alexei V Bourd* (abourd@qualcomm.com), 10310 Caminito Agadir, San Diego, CA 92131. Asymptotic behavior of solutions of difference adiabatic oscillator. Preliminary report.
We investigate the asymptotic behavior of solutions of the equation

$$
\begin{equation*}
x(n+2)-(2 \cos \alpha) x(n+1)+(1+g(n)) x(n)=0, \quad n=0,1, \ldots, \tag{1}
\end{equation*}
$$

where $0<\cos \alpha<1, g(n)$ is a "small" perturbation in certain sense. We say that equation (1) is in non-resonant case if the series

$$
\begin{equation*}
\sum_{k=n}^{\infty} g(k) \sin 2 k \alpha, \quad \sum_{k=n}^{\infty} g(k) \cos 2 k \alpha, \quad n \geq n_{0} \tag{2}
\end{equation*}
$$

converges. In resonant case series (2) diverges. The non-resonant and resonant cases are considered. The asymptotic representation of a fundamental system of solutions for $n \rightarrow \infty$ is obtained. (Received September 26, 2000)

