962-46-1127 Anna H Kamińska* (kaminska@memphis.edu), The University of Memphis, Department of Math. Sciences, Memphis, TN 38152. Convexity, concavity, type and cotype of Lorentz spaces. Given $0 , the Lorentz space <math>\Lambda_{p,w}$ is a subspace of the set of Lebesgue measurable functions $f : I \to \mathbb{R}$ with I = (0, 1) or $I = (0, \infty)$, such that

$$||f||_{p,w} := \left(\int_I f^{*p} w\right)^{1/p} < \infty,$$

where f^* is a decreasing rearrangement of f, and w > 0 is a weight function. We show that $\Lambda_{p,w}$ contains an order isomorphic copy of ℓ^p . We also provide criteria for lattice convexity and concavity of $\Lambda_{p,w}$ in terms of $W(t) = \int_0^t w$, and in the case when $\Lambda_{p,w}$ is normable, for its type and cotype as well. (Received October 03, 2000)