Michael P Prophet* (prophet@math.uni.edu), University of Northern Iowa, Mathematics Department, Cedar Falls, IA 50614, and Bruce L Chalmers (blc@math.uni.edu), University of California, Math Department, Riverside, CA. Simplicial cones and the existence of shape-preserving operators.
Let X denote a Banach space and V an n-dimensional subspace of X. A cone is said to be simplicial if the set of its extreme rays forms an 'independent' set. Let S^{*} be a simplicial, weak*-closed pointed cone in X^{*}. Let $S=\{f \in$ $\left.X \mid\langle f, u\rangle \geq 0 \forall u \in S^{*}\right\}$. We say that a linear operator $P: X \rightarrow V$ is shape-preserving (with respect to S^{*}) if $P S \subset S$. In this paper we investigate the conditions for which existence of shape-preserving operators necessitates $S_{\left.\right|_{V}}^{*}$ simplicial. This generalizes known results for projection operators. (Received October 03, 2000)

