Bernardo M Abrego* (abrego@math.rutgers.edu), Department of Mathematics, Hill Center, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854, and Gyorgy Elekes and Silvia Fernandez (sfernand@math.rutgers.edu), Department of Mathematics, Hill Center, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854. Finite point sets with many similar copies of a given pattern. Preliminary report.
Consider a k-element subset P of the plane. It is known that the maximum number of sets similar to P that can be found among n points in the plane is $\Theta\left(n^{2}\right)$ if and only if the cross ratio of any quadruplet of points in P is algebraic. In this talk we study the structure of the extremal n-sets A which have $c n^{2}$ similar copies of P. As our main result we prove the existence of large lattice-like structures in such sets A. In particular we prove that, for n large enough, A must contain m points in a line forming an arithmetic progression, and moreover, when P is not cocyclic or collinear, A contains $m \times m$ lattices. We show that this result is best possible when P is cocyclic or collinear by constructing n-element sets A with $c_{P} n^{2}$ copies of P and without $k \times k$ lattice subsets. Finally, we look at the case when P is an equilateral triangle. We give non-trivial bounds for the maximum number of equilateral triangles determined by n points without arithmetic progressions of size $\lambda(n)$. (Received October 02, 2000)

