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Given k ≥ 3 and a set An of n points in the plane, we shall denote by tk(An) the number of lines containing precisely k of

the points. Erdős (1962) raised the following problem: how large tk(An) can be, given that there are no (k + 1) collinear

points? Let Lk(n) denote the maximum of tk(An) when An varies over all sets of n points in the plane that contain no

collinear (k + 1) -tuple. Most of the results obtained so far are for the particular case k = 3 (also known as “the orchard

problem”). Much less is known for k ≥ 4. Grünbaum (1976) proved that

Lk(n) ≥ ck n
(k−1)/(k−2).

We present a different construction which implies that

Lk(n) ≥ c
′
k n

log(k+4)/log(k).

This matches Grünbaum’s bound for k = 4 and it is strictly better for all 5 ≤ k ≤ 35. (Received October 03, 2000)
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