962-52-1391 **Dan P Ismailescu*** (ismailes@cims.nyu.edu), Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York City, NY 10012. On a question of Erdős.

Given $k \ge 3$ and a set A_n of n points in the plane, we shall denote by $t_k(A_n)$ the number of lines containing precisely k of the points. Erdős (1962) raised the following problem: how large $t_k(A_n)$ can be, given that there are no (k + 1) collinear points? Let $L_k(n)$ denote the maximum of $t_k(A_n)$ when A_n varies over all sets of n points in the plane that contain no collinear (k + 1) -tuple. Most of the results obtained so far are for the particular case k = 3 (also known as "the orchard problem"). Much less is known for $k \ge 4$. Grünbaum (1976) proved that

$$L_k(n) \ge c_k n^{(k-1)/(k-2)}$$

We present a different construction which implies that

$$L_k(n) \ge c'_k n^{\log(k+4)/\log(k)}.$$

This matches Grünbaum's bound for k = 4 and it is strictly better for all $5 \le k \le 35$. (Received October 03, 2000)