962-52-1391 Dan P Ismailescu* (ismailes@cims.nyu.edu), Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York City, NY 10012. On a question of Erdős.
Given $k \geq 3$ and a set A_{n} of n points in the plane, we shall denote by $t_{k}\left(A_{n}\right)$ the number of lines containing precisely k of the points. Erdős (1962) raised the following problem: how large $t_{k}\left(A_{n}\right)$ can be, given that there are no $(k+1)$ collinear points? Let $L_{k}(n)$ denote the maximum of $t_{k}\left(A_{n}\right)$ when A_{n} varies over all sets of n points in the plane that contain no collinear $(k+1)$-tuple. Most of the results obtained so far are for the particular case $k=3$ (also known as "the orchard problem"). Much less is known for $k \geq 4$. Grünbaum (1976) proved that

$$
L_{k}(n) \geq c_{k} n^{(k-1) /(k-2)}
$$

We present a different construction which implies that

$$
L_{k}(n) \geq c_{k}^{\prime} n^{\log (k+4) / \log (k)}
$$

This matches Grünbaum's bound for $k=4$ and it is strictly better for all $5 \leq k \leq 35$. (Received October 03, 2000)

