962-52-646 Imre Barany, Mathematical Institute, Hungarian Academy of Sciences, POB 127 Budapest, Hungary, Krystyna M Kuperberg* (kuperkm@auburn. edu), Department of Mathematics, Auburn University, Auburn, AL 36849-5310, and Tudor Zamfirescu, Fachbereich Mathematik, Universitat Dortmund Dortmund, Germany. The total curvature of a shortest path.
The total curvature of a polygonal path $P=\left[v_{0}, v_{1}, \ldots, v_{n}\right]$ is defined as

$$
t(P)=\sum_{i=1}^{n-1} \pi-\angle\left(\left[v_{i-1}, v_{i}\right],\left[v_{i}, v_{i+1}\right]\right)
$$

Let \mathcal{K} be the set of all compact convex polyhedra in \mathbb{R}^{3}. Let $\mathcal{T}=\{t(P)\}$, where P is a shortest path joining two points in the boundary of a polyhedron $K \in \mathcal{K}$. It has been asked in [1] whether the set \mathcal{T} is bounded. The subset of \mathcal{T} consisting of all numbers $t(P)$ such that P is planar is bounded by 2π. An example showing that this bound does not hold for \mathcal{T} will be presented. This work is to be included in a paper joint with I. Bárány and T. Zamfirescu.
[1] P. Argawal, S. Har-Peled, M. Sharir, K. Varadarajan, Approximating shortest paths on a convex polytope in three dimensions, J.A.C.Math. 44 (1997), 557-584. (Received September 18, 2000)

