Jeffrey C. Lagarias* (jcl@research.att.com), Room C235, AT\&T Labs, 180 Park Avenue, Building 103, Florham Park, NJ 07932-0971, Colin L Mallows (clm@research.att.com), Room C285, AT\&T Labs, 180 Park Avenue, Building 103, Florham Park, NJ 07932-0971, and Allan R Wilks (allan@research.att.com), Room C207, AT\&T Labs, 180 Park Avenue, Building 103, Florham Park, NJ 07932-0971. Beyond the Descartes Circle Theorem.
The Descartes circle theorem states that if four circles in the plane are mutually tangent and have disjoint interiors, then their curvatures (or "bends") $b_{i}=1 / r_{i}$ satisfy the relation $\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}=2\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)$. We show that similar relations hold involving the centers of four circles in such a configuration, coordinatized as complex numbers, which we call the complex Descartes theorem. Futhermore these relations have matrix generalizations to the n-dimensional case, in each of Euclidean, spherical and hyperbolic n-space. In the process we obtain direct analogues of the Descartes circle theorem valid in spherical and hyperbolic n-space. These results led to a large project studying Apollonian circle packings and their n-dimensional generalizations, with associated group theory and number theory questions, which is joint work of the authors with R. L. Graham (UCSD) and C. Yan (Texas A \& M). (Received September 24, 2000)

