962-53-1224 Andrew J Bucki^{*} (abucki@ossm.edu), 1141 North Lincoln Boulevard, Oklahoma City, OK 73104. Groups in the category of para-φ-manifolds.

Let M be an n-dimensional differentiable manifold. An endomorphism of M given by a tensor field φ of type (1,1) and constant rank r which satisfies $\varphi^3 - \varphi = 0$ is called a para- φ -structure and M is a para- φ -manifold. Let M_i be a para- φ -manifold with a para- φ -structure φ_i (i = 1, 2) and $f : M_1 \to M_2$. Then f is a para- φ -map if $\varphi_2 \circ f_* = f_* \circ \varphi_1$. If G is a Lie group with an integrable para- φ -structure φ and both L_g and $R_g : G \to G$ are para- φ -maps, then G is called a para- φ -Lie group. A para- φ -structure φ with parallelizable kernel is an almost r-paracontact structure on M. In this paper some properties of para- φ -manifolds are studied. It is shown that every para- φ -Lie group G is the quotient of the product of an almost product Lie group and a Lie group with trivial para- φ -structure by a discrete subgroup. (Received October 02, 2000)