962-54-1184 Clarke W Proctor* (f_proctorcw@titan.sfasu.edu), C. Wayne Proctor, Department of Mathematics, Stephen F. Austin State University, Nacogdoches, TX 75962. Half Lines Having a Common Continuum with Span Zero as Remainder. Preliminary report.
The span [Lelek, 1964] of a continuum M is defined to be the real number $\sigma(M)=\sup \varepsilon / \varepsilon$ is a real number such that there is a continuum $K \subseteq M \times M$ with $\pi_{1}(K)=\pi_{2}(K)$ and $d(x, y) \geqslant \varepsilon$ for all $(x, y) \in K$. If f and g are each mappings into the Hilbert cube Q with domains equal to $[0,+\infty)$, then f limit uniformizes with g if there are mappings a and b from $[0,+\infty)$ onto $[0,+\infty)$ such that (1) for each $\varepsilon>0$ there exists an integer $N>0$ such that $d(f \circ a(t), g \circ b(t))<\varepsilon$ for all $t \geqslant N$ and (2) for each real number $r>0$ there is a real number $s>0$ such that $a([s,+\infty)) \cup b([s,+\infty)) \subseteq[r,+\infty)$. Theorem: If M is a subcontinuum of the Hilbert cube Q with $\sigma(M)=0$ and if f and g are each mappings from $[0,+\infty)$ into $Q-M$ such that the range of f and g are each half lines with remainder M with

$$
\operatorname{Lim}_{x \rightarrow \infty} \overline{f([x,+\infty))}=M
$$

and

$$
\operatorname{Lim}_{x \rightarrow \infty} \overline{g([x,+\infty))}=M
$$

, then f limit uniformizes with g. (Received October 02, 2000)

