962-57-869 **Kyung Bai Lee*** (kblee@math.ou.edu), Department of Mathematics, University of Oklahoma, Norman, OK 73019, and **Andrzej Szczepański** (matas@paula.univ.gda.pl), Institute of Mathematics, University of Gdańsk, ul.Wita Stwosza 57, 80–952 Gdańsk, Poland. *Maximal holonomy of almost Bieberbach groups for* **Heis**₅.

The Heisenberg group $\operatorname{Heis}_{2n+1}$ is $\mathbb{R} \times \mathbb{C}^n$ with group operation given by $(s, \mathbf{z})(t, \mathbf{z}') = (s + t + 2\operatorname{Im}\{\mathbf{z}\mathbf{\overline{z}}'\}, \mathbf{z} + \mathbf{z}')$. Thus it is a simply connected 2-step nilpotent Lie group. Let M be an infra-nilmanifold with $\operatorname{Heis}_{2n+1}$ -geometry; that is, $M = \Pi \setminus \operatorname{Heis}_{2n+1}$, where $\Pi \subset \operatorname{Heis}_{2n+1} \rtimes \operatorname{Aut}(\operatorname{Heis}_{2n+1})$ is a torsion free, discrete subgroup. By L. Auslander, the pure translations $\Gamma = \Pi \cap \operatorname{Heis}_{2n+1}$ forms a lattice and the quotient Π/Γ is a finite group, called the holonomy. It is known that the order of the holonomy group Ψ is bounded by a universal constant I_{n+1} . The main result is finding this number for n = 2. We prove that $I_3 = 24$. In other words, the maximal order of the holonomy groups for M with the Heis_5 -geometry is 24. Let M be a complex hyperbolic 3-manifolds of finite volume. Let $\chi(M)$ be its Euler characteristic, and k be the number of ends of M. Then the main result implies that $\operatorname{Vol}(M) \geq \frac{k}{9}$ and $k \leq -24\Pi^3 \chi(M)$. (Received September 28, 2000)