962-58-877

Matthew B Stenzel* (stenzel@math.ohio-state.edu), Ohio State University, Newark Campus, 1179 University Drive, Newark, OH 43055. Sharp bounds for the heat kernel on certain symmetric spaces of the non-compact type. Preliminary report.

We give new sharper than Gaussian bounds for the heat kernel on rank one and split rank globally symmetric spaces of the non-compact type of the form $K(t, x, y) \leq C_T t^{-n/2} e^{-d^2(x,y)/4t} \theta^{-1/2}(x, y)$, valid uniformly for $(t, x, y) \in (0, T] \times X \times X$. Here $\theta(x, y)$ is the Jacobian of Exp_x evaluated at $\operatorname{Exp}_x^{-1} y$; the factor $\theta^{-1/2}(x, y)$ decays exponentially as $d(x, y) \to \infty$. The proof uses a very explicit expression for $\Delta_y \theta^{-1/2}$ in terms of the restricted roots and a modified Minakshisundaram-Pleijel paramatrix. The motivation for this estimate is to extend Brian Hall's "phase space bounds" on Lie groups to symmetric spaces. (Joint work with Brian Hall). (Received September 28, 2000)