962-B1-48 Victoria Rayskin* (vrayskin@bu.edu), 101 Monmouth St.#218, Brookline, MA 02446. Tangential Homoclinic Intersections in \mathbb{R}^n . Preliminary report.

The well known λ -Lemma states the following: Let f be a C^1 -diffeomorphism of \mathbb{R}^n with a hyperbolic fixed point at 0 and m- and p-dimensional stable and unstable manifolds W^S and W^U , respectively (m + p = n). Let D be a p-disk in W^U and w be another p-disk in W^U meeting W^S at some point a transversely. Then $\bigcup_{n\geq 0} f^n(w)$ contains p-disks arbitrarily C^1 -close to D. In this paper we will show that a similar assertion still holds outside of an arbitrarily small neighborhood of 0, even in the case of tangential homoclinic intersections with finite order of contact, if we make a low order non-resonance assumption. We also show that this assumption is a necessary one in dimensions higher than 2. For the case of a homoclinic intersection with an infinite order of contact we present a counter-example for our Tangential λ -Lemma. Using the Tangential λ -Lemma we prove that one can find a transverse crossing arbitrarily close to a degenerate crossing if the homoclinic point is a point of finite order of contact. This generalizes the Birkhoff-Smale Theorem. Although we show that for planar dynamics non-resonance assumption is redundant. (Received July 05, 2000)