Consider the Lie Algebra $\mathfrak{g}=s \ell(n, \mathbb{C})$ of $n \times n$ trace zero matrices over the field of complex numbers. The subalgebra of diagonal matrices \mathfrak{h} is called a Cartan subalgebra of \mathfrak{g}. The root multiplicities of \mathfrak{g} are the dimensions of certain generalized eigenspaces called root spaces of \mathfrak{g} under the adjoint action of \mathfrak{h}. In this case it is known that all root spaces are one-dimensional. In this talk we discuss this problem for an infinite-dimensional graded Lie algebras with $\hat{\mathfrak{g}}=\oplus_{j \in \mathbb{Z}} g_{j}$ with $\mathfrak{g}_{0}=\mathfrak{g} \oplus \mathbb{C} I=g \ell(n, \mathbb{C})$. We will use the combinatorics of the representation theory of \mathfrak{g} and some homology techniques to compute the root multiplicites of \mathfrak{g}. (Received September 19, 2000)

