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Overview 
 
Although geometry is as old as mathematics itself, discrete geometry only fully emerged in the 20th 
century, and computational geometry was only christened in the late 1970s. The terms ``discrete'' and 
“computational” fit well together as the geometry must be discretized in preparation for computations. 
“Discrete” here means concentration on finite sets of points, lines, triangles, and other geometric objects, 
and is used to contrast with “continuous” geometry, for example, smooth manifolds. Although the two 
endeavors were growing naturally on their own, it has been the interaction between discrete and 
computational geometry that has generated the most excitement, with each advance in one field spurring 
an advance in the other.  The interaction also draws upon two traditions: theoretical pursuits in pure 
mathematics and applications-driven directions often arising in computer science. The confluence has 
made the topic an ideal bridge between mathematics and computer science.  It is precisely to bridge that 
gap that we hope to accomplish with this short course. 
 
The material that covered is accessible to faculty and scholars at several different levels, whether they are 
interested in teaching or research: whether teaching students at an advanced high school level, a collegiate 
setting, or at the graduate level, and research specifically on the topics covered or in allied fields. The 
reason this course allows for such breadth is due to the subject material.  A solid understanding of proofs 
is all that is needed to tackle some of the most beautiful and intriguing questions in this field.  Moreover, 
a strong intuition of this subject can be obtained and developed through visualization.  Due to the relative 
youth of the field, there are many accessible unsolved problems, which we highlight throughout the 
course. Although some have resisted the assaults of many talented researchers and might be awaiting a 
theoretical breakthrough, others may be accessible with current techniques and only await significant 
attention by an enterprising researcher. The field has expanded greatly since its origins and now the new 
connections to areas of mathematics and new application areas seems only to be accelerating. We hope 
this course can serve to open the door on this rich and fascinating subject.  
 
Topics Covered 
 
Our short course is broken into eight lectures, all given by the two organizers. 
 
Introductory Session:  This lecture is meant to introduce the worlds of the “discrete” and the 
“computational” to a mathematical audience.  The key tool will be the study of polygons and polyhedra, 
the building blocks of 2D and 3D discrete geometry.  Topics will include triangulations, enumerations, 
and dissections, culminating in Max Dehn's counterexample to David Hilbert's third problem. 
 

(a) Why “Computational” Geometry? 
(b) Polygonal Building Blocks 
(c) Scissors Congruence & Hilbert's third problem 

 
Convex Hulls:  Although a convex hull of a set of points in the plane is easy enough to define, how does 
one go about computing it?  What does it mean to construct a geometric algorithm, and how can one 
measure better algorithms?  We look at several powerful algorithms for 2D hulls, and glimpse into the 
difficulties with 3D hulls. 
 

(a) Incremental Algorithm 
(b) Analysis of Algorithms 



(c)  Graham Scan Algorithm 
 
Triangulations: This lecture focuses on the partitioning a set of points in the plane into triangles, forming 
the basis for numerous real-world applications such as terrain meshing and face recognition.  We start 
with basic algorithms and combinatorics and then consider the discrete space of all triangulations (the flip 
graph). We then concentrate on what is arguably the most important triangulation, the Delaunay 
triangulation, having striking properties and playing a central role in many applications. 
 

(a) Basic Combinatorics 
(b) The Flip Graph 
(c) Delaunay Triangulation 

 
Voronoi Diagrams: Our interest is now on which point of a point set is closest to an arbitrary point in the 
plane. This focus on “nearest neighbors” leads to the rich geometry of the Voronoi diagram. Moreover, 
there is an intimate connection via duality between Voronoi diagrams and the Delaunay triangulations 
from above. And there is a beautiful and deep connection between both these structures and convex hulls 
in 3D. 
 

(a) Voronoi Geometry 
(b) Duality 
(c) Convex Hull Revisited 

 
 
Curves:  We extend the Voronoi diagram to apply to curves rather than to just sites, leading to two 
generalizations: the medial axis (useful in biology) and the straight skeleton (useful in orgiami).   This 
will bring us to curve shortening, which connects to several deep theorems of mathematics, most notably 
the Poincaré conjecture using the heat equation.  We close with curve reconstruction, an important 
practical task whose algorithms employ Voronoi diagrams, Delaunay triangulations, and the medial axis. 
 

(a) Medial Axis, Straight Skeleton and Origami 
(b) Curve Shortening and the Poincaré Conjecture 
(c) Curve Reconstruction 

 
Polyhedra:   Although we encounter polyhedra in earlier lectures, we study them more systematically 
with the dual goal of strengthening 3D intuition and presenting several theorem gems.   Considering 
shortest paths on convex polyhedra, a topic which brings us back to the ubiquitous Voronoi diagram, 
presents one of the most beautiful open problems on edge-unfolding polyhedra.  We follow that with two 
beautiful and useful theorems: The Gauss-Bonnet Theorem and Cauchy's Rigidity Theorem. 
 

(a) Unfolding 
(b) Gauss-Bonnet Theorem 
(c) Cauchy's Rigidity Theorem 

 
 
Configuration Spaces: This lecture explores configuration spaces for the simplest articulated objects, the 
open polygonal chains, which brings us to several famous problems on locked chains.   This in turn leads 
to an investigation of closed polygonal chains, concentrating on the topology of the space of polygons.   
We close with an advanced topic, the structure of the configuration space of moving and colliding 
particles, leading back to the intricate combinatorics of the triangulations of convex polygons. 
 

(a) Polygonal Chains 



(b) Locked Chains 
(c) Particle Collisions 

 
 
Concluding Session:  Knowing all of this information, how does one excite and influence the next 
generation of scholars and teachers?  We share with the audience our success and failures as teachers in 
the classroom, and our approaches to undergraduate research in this area.  We close with current trends of 
this amazing subject, as it moves into the fields of biology, statistics, and beyond. 
 

(a) Pedagogy 
(b) Undergraduate Research 
(c) Current Trends 


