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Outline

A model for random sets.

Some old integral geometry.

Gaussian integral geometry.

Accuracy of approximation.
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Random sets

Gaussian processes: basic building blocks

Twice-differentiable Gaussian process (ft)t∈M on a manifold
M.
Satisfying:

E{ft} = 0;

E{f 2
t } = 1.

Why Gaussian?

Gaussian processes are specified by mean and covariance
function.

Finite-dimensional distributions are all simple –
multivariate Gaussian.
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Random sets

Excursion sets

Random sets we will consider are of the form:

f −1A = {t ∈ M : ft ∈ A}

for A ⊂ R. In particular, the geometry of these sets, and how it
is determined by correlation function of f .
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Excursion above 0
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Excursion above 1
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Excursion above 1.5
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Excursion above 2
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Excursion above 2.5
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Excursion above 3
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Excursion above 3.3
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Euler characteristic

What geometric features?

We’re interested in integral geometric properties.
Specifically, the (expected) Euler characteristic

E
{
χ
(
f −1[u,+∞)

)}
= E

{
χ
(
M ∩ f −1[u,+∞)

)}
EC tells you very little

Let M be a 2-manifold without boundary, then

E
{
χ
(
M ∩ f −1[0,+∞)

)}
=

1

2
· χ(M)

With boundary:

E
{
χ
(
M ∩ f −1[0,+∞)

)}
=

1

2
· χ(M) +

1

2π
· |∂M|
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Euler characteristic

EC is computable

Of all quantities in the studies of Gaussian processes, the EC
stands out as being explicitly computable in wide generality

E
{
χ
(
M ∩ f −1[u,+∞)

)}
=

dim(M)∑
j=0

Lj(M)ρj(u).

Where do Lj ’s and ρj ’s come from?

EC tells you a lot

For “nice enough” M

E
{
χ
(
M ∩ f −1[u,+∞)

)} u→∞' P
{

sup
t∈M

ft ≥ u

}
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Euler characteristic

Accuracy

If the parameter set is locally convex, then∣∣∣∣P{sup
t∈M

ft ≥ u

}
− E

{
χ
(
M ∩ f −1[u,+∞)

)}∣∣∣∣
u→∞

= Oexp

(
e
−u2/2·(1+ 1

σ2
c (f )

)
)

Since, ρj(u) = Oexp(e−u
2/2), the approximation has

exponential relative accuracy!
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Integral geometry

Tube formulae

Suppose f is (the restriction to M) of an isotropic process

f̃ , with Var
{
df̃ /dxi

}
= 1.

For small r , the functionals Lj(M) are implicitly defined
by Steiner-Weyl formula

Hk

(
x ∈ Rk : d(x ,M) ≤ r

)
=

k∑
j=0

ωk−j r
k−jLj(M;M)
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Integral geometry: tubes

H3 (Tube([0, a]× [0, b]× [0, c], r))

= abc + 2r · (ab + bc + ac) + (πr2) · (a + b + c) +
4πr3

3
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Integral geometry: tubes
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Integral geometry: tubes

Local convexity is important!

Singularity means implicit definition is invalid, BUT
Lj(·)′s are still well defined . . .

They are defined for a large class of sets . . .
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Gaussian processes
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Integral geometry: curvature measures

Hk−1 (expν (A ∩ ∂D, rν)) =
k∑

j=1

r j−1 · ωj

∫
A
Lk−j(D; dp)
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Integral geometry

Kinematic Fundamental Formula

Where else do we see Lj(·)’s?
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Integral geometry

Kinematic Fundamental Formula

Considers the “average” curvature measures of M1 ∩ gM2,
i.e.
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Integral geometry: KFF

The KFF on RN

Isometry group GN of rigid motions of RN ,

GN ∼ RN o O(N)

Fix a Haar measure:

νN ({gN ∈ GN : gNx ∈ A}) = HN(A)

∫
GN

Li (M1 ∩ gNM2) dνN(gN)

=
N−i∑
j=0

[
i + j
i

] [
N
j

]−1

Li+j(M1)LN−j(M2)
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Back to Gaussian processes

Analogy with KFF

Recall what we were trying to study

E
{
χ
(
M ∩ f −1[u,+∞)

)}
=

∫
Ω
L0(M ∩ f (ω)−1[u,+∞)) P(dω)

=

dim(M)∑
j=0

Lj(M)ρj(u)

This looks like KFF on RN where gNM2 is replaced by
f −1[u,+∞) = f −1D.

Can replace f with f = (f1, . . . , fj) . Let’s look at some
examples . . .
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Gaussian processes: D a cone
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Gaussian processes: f −1D
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Gaussian processes: D a variety
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Gaussian processes: f −1D
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Gaussian processes

Gaussian Kinematic Formula

Let f = (f1, . . . , fk) be made of IID copies of a Gaussian
field

Consider the additive functional on Rk that takes a
“rejection region”

D 7→ E
{
χ
(
M ∩ f −1D

)}
.

Questions: how do the Lj ’s enter into this functional?
How about D?
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Gaussian processes

Gaussian Kinematic Formula

Define the functionals Mγk
j (·) implicitly by

γk

(
y ∈ Rk : d(y ,D) ≤ r

)
=
∑
j≥0

(2π)j/2r j

j!
Mγk

j (D).

Then:

E
{
χ
(
M ∩ f −1D

)}
=
∑
j

Lj(M) · Mγk
j (D)
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Integral geometry: curvature measures

Q: How do we compute Mγk
j (·)?
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Integral geometry: curvature measures

A: Integrate power series expansion for density over
hypersurface at distance r . . .
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Example: linear statistic
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Example: χ2 statistic
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Examples

EC densities

Gaussian EC densities

ρj(u) = (−1)j
d j

duj
P {N(0, 1) > u}

χ2
k EC densities

ρj ,χ2
k
(u) = (−1)j

d j

dx j
P
{√

χ2
k > x

} ∣∣∣∣
x=
√
u
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t or F statistic
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t or F statistic
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Ideas behind the proof

Hidden embedding

A Gaussian process is just a mapping

t 7→ ft ∈ L2(Ω,F ,P)

Our assumptions about mean and variance implies the
image is in the unit sphere in L2(Ω,F ,P), and it is an
embedding.

This suggests that the relevant “geometry” to prove this
result is spherical.

Short answer: yes.
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Proof: spherical KFF

Spherical KFF

For κ ∈ R define

Lκ(·) =
∞∑
n=0

(−κ)n

(4π)n
(i + 2n)!

n!i !
Li+2n(·).

For M1,M2 ⊂ Sn1/2(Rn)∫
Gn

Ln−1

i (M1 ∩ gnM2) dνn,λ(gn)

=
n−1−i∑
j=0

[
i + j
i

] [
n − 1
j

]−1

Ln−1

i+j (M1)Ln−1

n−1−j(M2)

where Gn = O(n), appropriately normalized.
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Proof: Poincaré’s limit

Model process

For M ⊂ S(Rj) define a Rk valued process

f n(t, gn) = πk(n1/2gnt)

where gn ∈ O(n) is a Haar-distributed random matrix and
πk : Sn1/2(Rn)→ Rk is projection onto the first k
coordinates.

Poincaré’s limit (and generalizations) ensures that the
process f n = (f n1 , . . . , f

n
k ) converges in variation to a

vector of IID zero mean, unit variance Gaussian processes
f = (f1, . . . , fk).
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Proof: connecting Gaussian processes with KFF

Expected EC for model process

For D ⊂ Rk∫
Gn

L1
i

(
M ∩ (f n)−1(D)

)
dνn,λ(gn)

= n−i/2

∫
Gn

Ln−1

i

(
n1/2M ∩ π−1

k D
)

dνn,λ(gn)

= cn

n−1−i∑
j=0

[
i + j
i

] [
n − 1
j

]−1

L1
i+j(M)Ln−1

n−1−j(π
−1
k D)

The set π−1
k D is the disjoint union of a warped product

and D ∩ Sn1/2(Rk). Need to analyse curvatures of warped
product asymptotically.

The rest is combinatorics . . . almost.
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