Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Gaussian Kinematic Formula and the integral geometry of random sets

Jonathan Taylor
Stanford University

November 11, 2011

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Outline

- A model for random sets.
- Some old integral geometry.
- Gaussian integral geometry.
- Accuracy of approximation.

Random sets

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Gaussian processes: basic building blocks

Twice-differentiable Gaussian process $\left(f_{t}\right)_{t \in M}$ on a manifold M.

Satisfying:

- $\mathbb{E}\left\{f_{t}\right\}=0$;
- $\mathbb{E}\left\{f_{t}^{2}\right\}=1$.

Why Gaussian?

- Gaussian processes are specified by mean and covariance function.
- Finite-dimensional distributions are all simple multivariate Gaussian.

Random sets

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Excursion sets

Random sets we will consider are of the form:

$$
f^{-1} A=\left\{t \in M: f_{t} \in A\right\}
$$

for $A \subset \mathbb{R}$. In particular, the geometry of these sets, and how it is determined by correlation function of f.

Excursion above 0

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan
Taylor Stanford
University

Excursion above 1

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Excursion above 1.5

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan
Taylor Stanford
University

Excursion above 2

Gaussian
Kinematic Formula and the integral geometry of random sets

Excursion above 2.5

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan
Taylor Stanford
University

Excursion above 3

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Excursion above 3.3

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Euler characteristic

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

What geometric features?

We're interested in integral geometric properties.
Specifically, the (expected) Euler characteristic

$$
\mathbb{E}\left\{\chi\left(f^{-1}[u,+\infty)\right)\right\}=\mathbb{E}\left\{\chi\left(M \cap f^{-1}[u,+\infty)\right)\right\}
$$

EC tells you very little

Let M be a 2-manifold without boundary, then

$$
\mathbb{E}\left\{\chi\left(M \cap f^{-1}[0,+\infty)\right)\right\}=\frac{1}{2} \cdot \chi(M)
$$

With boundary:

$$
\mathbb{E}\left\{\chi\left(M \cap f^{-1}[0,+\infty)\right)\right\}=\frac{1}{2} \cdot \chi(M)+\frac{1}{2 \pi} \cdot|\partial M|
$$

Euler characteristic

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

EC is computable

Of all quantities in the studies of Gaussian processes, the EC stands out as being explicitly computable in wide generality

$$
\mathbb{E}\left\{\chi\left(M \cap f^{-1}[u,+\infty)\right)\right\}=\sum_{j=0}^{\operatorname{dim}(M)} \mathcal{L}_{j}(M) \rho_{j}(u) .
$$

Where do \mathcal{L}_{j} 's and ρ_{j} 's come from?
EC tells you a lot
For "nice enough" M

$$
\mathbb{E}\left\{\chi\left(M \cap f^{-1}[u,+\infty)\right)\right\} \stackrel{u \rightarrow \infty}{\sim} \mathbb{P}\left\{\sup _{t \in M} f_{t} \geq u\right\}
$$

Euler characteristic

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Accuracy

- If the parameter set is locally convex, then

$$
\begin{gathered}
\left|\mathbb{P}\left\{\sup _{t \in M} f_{t} \geq u\right\}-\mathbb{E}\left\{\chi\left(M \cap f^{-1}[u,+\infty)\right)\right\}\right| \\
\stackrel{u \rightarrow \infty}{=} O_{\exp }\left(e^{-u^{2} / 2 \cdot\left(1+\frac{1}{\sigma_{(}^{2}(f)}\right)}\right)
\end{gathered}
$$

- Since, $\rho_{j}(u)=O_{\exp }\left(e^{-u^{2} / 2}\right)$, the approximation has exponential relative accuracy!

Integral geometry

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Tube formulae

- Suppose f is (the restriction to M) of an isotropic process \tilde{f}, with $\operatorname{Var}\left\{d \tilde{f} / d x_{i}\right\}=1$.
- For small r, the functionals $\mathcal{L}_{j}(M)$ are implicitly defined by Steiner-Weyl formula

$$
\mathcal{H}_{k}\left(x \in \mathbb{R}^{k}: d(x, M) \leq r\right)=\sum_{j=0}^{k} \omega_{k-j} r^{k-j} \mathcal{L}_{j}(M ; M)
$$

Integral geometry: tubes

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

$\mathcal{H}_{3}(\operatorname{Tube}([0, a] \times[0, b] \times[0, c], r))$

$$
=a b c+2 r \cdot(a b+b c+a c)+\left(\pi r^{2}\right) \cdot(a+b+c)+\frac{4 \pi r^{3}}{3}
$$

Integral geometry: tubes

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Integral geometry: tubes

Gaussian Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Local convexity is important!

- Singularity means implicit definition is invalid, BUT $\mathcal{L}_{j}(\cdot)^{\prime}$'s are still well defined..
- They are defined for a large class of sets ...

Gaussian processes

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford
University

Integral geometry: curvature measures

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Integral geometry

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Kinematic Fundamental Formula

- Where else do we see $\mathcal{L}_{j}(\cdot)$'s?

Integral geometry

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Kinematic Fundamental Formula

- Considers the "average" curvature measures of $M_{1} \cap g M_{2}$, i.e.

Integral geometry: KFF

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

The KFF on \mathbb{R}^{N}

- Isometry group G_{N} of rigid motions of \mathbb{R}^{N},

$$
G_{N} \sim \mathbb{R}^{N} \rtimes O(N)
$$

- Fix a Haar measure:

$$
\nu_{N}\left(\left\{g_{N} \in G_{N}: g_{N} x \in A\right\}\right)=\mathcal{H}_{N}(A)
$$

$$
\begin{aligned}
\int_{G_{N}} & \mathcal{L}_{i}\left(M_{1} \cap g_{N} M_{2}\right) d \nu_{N}\left(g_{N}\right) \\
& =\sum_{j=0}^{N-i}\left[\begin{array}{c}
i+j \\
i
\end{array}\right]\left[\begin{array}{c}
N \\
j
\end{array}\right]^{-1} \mathcal{L}_{i+j}\left(M_{1}\right) \mathcal{L}_{N-j}\left(M_{2}\right)
\end{aligned}
$$

Back to Gaussian processes

Gaussian Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Analogy with KFF

- Recall what we were trying to study

$$
\begin{aligned}
\mathbb{E}\{\chi & \left.\left(M \cap f^{-1}[u,+\infty)\right)\right\} \\
& =\int_{\Omega} \mathcal{L}_{0}\left(M \cap f(\omega)^{-1}[u,+\infty)\right) \mathbb{P}(d \omega) \\
& =\sum_{j=0}^{\operatorname{dim}(M)} \mathcal{L}_{j}(M) \rho_{j}(u)
\end{aligned}
$$

- This looks like KFF on \mathbb{R}^{N} where $g_{N} M_{2}$ is replaced by $f^{-1}[u,+\infty)=f^{-1} D$.
- Can replace f with $f=\left(f_{1}, \ldots, f_{j}\right)$. Let's look at some examples...

Gaussian processes: D a cone

Gaussian
Kinematic Formula and the integral geometry of random sets Jonathan Taylor Stanford University

Gaussian processes: $f^{-1} D$

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Gaussian processes: D a variety

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford
University

Gaussian processes: $f^{-1} D$

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Gaussian processes

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Gaussian Kinematic Formula

- Let $f=\left(f_{1}, \ldots, f_{k}\right)$ be made of IID copies of a Gaussian field
- Consider the additive functional on \mathbb{R}^{k} that takes a "rejection region"

$$
D \mapsto \mathbb{E}\left\{\chi\left(M \cap f^{-1} D\right)\right\} .
$$

- Questions: how do the \mathcal{L}_{j} 's enter into this functional? How about D?

Gaussian processes

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Gaussian Kinematic Formula

- Define the functionals $\mathcal{M}_{j}^{\gamma_{k}}(\cdot)$ implicitly by

$$
\gamma_{k}\left(y \in \mathbb{R}^{k}: d(y, D) \leq r\right)=\sum_{j \geq 0} \frac{(2 \pi)^{j / 2} r^{j}}{j!} \mathcal{M}_{j}^{\gamma_{k}}(D) .
$$

- Then:

$$
\mathbb{E}\left\{\chi\left(M \cap f^{-1} D\right)\right\}=\sum_{j} \mathcal{L}_{j}(M) \cdot \mathcal{M}_{j}^{\gamma_{k}}(D)
$$

Integral geometry: curvature measures

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Q: How do we compute $\mathcal{M}_{j}^{\gamma_{k}}(\cdot)$?

Integral geometry: curvature measures

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

A: Integrate power series expansion for density over hypersurface at distance r...

Example: linear statistic

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan
Taylor Stanford
University

Example: χ^{2} statistic

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan
Taylor Stanford
University

Examples

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

EC densities

- Gaussian EC densities

$$
\rho_{j}(u)=(-1)^{j} \frac{d^{j}}{d u^{j}} \mathbb{P}\{N(0,1)>u\}
$$

- χ_{k}^{2} EC densities

$$
\rho_{j, \chi_{k}^{2}}(u)=\left.(-1)^{j} \frac{d^{j}}{d x^{j}} \mathbb{P}\left\{\sqrt{\chi_{k}^{2}}>x\right\}\right|_{x=\sqrt{u}}
$$

t or F statistic

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan
Taylor Stanford
University

t or F statistic

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan
Taylor Stanford University

η_{U}

Ideas behind the proof

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Hidden embedding

- A Gaussian process is just a mapping

$$
t \mapsto f_{t} \in L^{2}(\Omega, \mathcal{F}, \mathbb{P})
$$

- Our assumptions about mean and variance implies the image is in the unit sphere in $L^{2}(\Omega, \mathcal{F}, \mathbb{P})$, and it is an embedding.
- This suggests that the relevant "geometry" to prove this result is spherical.
- Short answer: yes.

Proof: spherical KFF

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Spherical KFF

- For $\kappa \in \mathbb{R}$ define

$$
\mathcal{L}^{\kappa}(\cdot)=\sum_{n=0}^{\infty} \frac{(-\kappa)^{n}}{(4 \pi)^{n}} \frac{(i+2 n)!}{n!i!} \mathcal{L}_{i+2 n}(\cdot) .
$$

- For $M_{1}, M_{2} \subset S_{n^{1 / 2}}\left(\mathbb{R}^{n}\right)$

$$
\begin{aligned}
\int_{G_{n}} & \mathcal{L}_{i}^{n^{-1}}\left(M_{1} \cap g_{n} M_{2}\right) d \nu_{n, \lambda}\left(g_{n}\right) \\
& =\sum_{j=0}^{n-1-i}\left[\begin{array}{c}
i+j \\
i
\end{array}\right]\left[\begin{array}{c}
n-1 \\
j
\end{array}\right]^{-1} \mathcal{L}_{i+j}^{n^{-1}}\left(M_{1}\right) \mathcal{L}_{n-1-j}^{n^{-1}}\left(M_{2}\right)
\end{aligned}
$$

where $G_{n}=O(n)$, appropriately normalized.

Proof: Poincaré's limit

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Model process

- For $M \subset S\left(\mathbb{R}^{j}\right)$ define a \mathbb{R}^{k} valued process

$$
f^{n}\left(t, g_{n}\right)=\pi_{k}\left(n^{1 / 2} g_{n} t\right)
$$

where $g_{n} \in O(n)$ is a Haar-distributed random matrix and $\pi_{k}: S_{n^{1 / 2}}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{k}$ is projection onto the first k coordinates.

- Poincaré's limit (and generalizations) ensures that the process $f^{n}=\left(f_{1}^{n}, \ldots, f_{k}^{n}\right)$ converges in variation to a vector of IID zero mean, unit variance Gaussian processes $f=\left(f_{1}, \ldots, f_{k}\right)$.

Proof: connecting Gaussian processes with KFF

Gaussian
Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Expected EC for model process

- For $D \subset \mathbb{R}^{k}$

$$
\begin{aligned}
\int_{G_{n}} & \mathcal{L}_{i}^{1}\left(M \cap\left(f^{n}\right)^{-1}(D)\right) d \nu_{n, \lambda}\left(g_{n}\right) \\
& =n^{-i / 2} \int_{G_{n}} \mathcal{L}_{i}^{n^{-1}}\left(n^{1 / 2} M \cap \pi_{k}^{-1} D\right) d \nu_{n, \lambda}\left(g_{n}\right) \\
& =c_{n} \sum_{j=0}^{n-1-i}\left[\begin{array}{c}
i+j \\
i
\end{array}\right]\left[\begin{array}{c}
n-1 \\
j
\end{array}\right]^{-1} \mathcal{L}_{i+j}^{1}(M) \mathcal{L}_{n-1-j}^{n^{-1}}\left(\pi_{k}^{-1} D\right)
\end{aligned}
$$

- The set $\pi_{k}^{-1} D$ is the disjoint union of a warped product and $D \cap S_{n^{1 / 2}}\left(\mathbb{R}^{k}\right)$. Need to analyse curvatures of warped product asymptotically.
- The rest is combinatorics . . . almost.

