Gaussian
Kinematic
Formula and
the integral
geometry of
random sets

Jonathan Taylor Stanford University

Gaussian Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

November 11, 2011

Gaussian Kinematic Formula and the integral geometry of random sets

> Jonathan Taylor Stanford University

Outline

- A model for random sets.
- Some *old* integral geometry.
- Gaussian integral geometry.
- Accuracy of approximation.

Random sets

Gaussian Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Gaussian processes: basic building blocks

Twice-differentiable Gaussian process $(f_t)_{t \in M}$ on a manifold M. Satisfying:

• $\mathbb{E}{f_t} = 0;$

```
• \mathbb{E}{f_t^2} = 1.
```

Why Gaussian?

- Gaussian processes are specified by mean and covariance function.
- Finite-dimensional distributions are all simple multivariate Gaussian.

Random sets

Gaussian Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Excursion sets

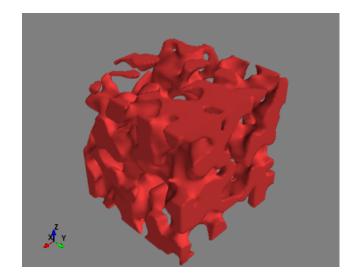
Random sets we will consider are of the form:

$$f^{-1}A = \{t \in M : f_t \in A\}$$

for $A \subset \mathbb{R}$. In particular, the *geometry* of these sets, and how it is determined by correlation function of f.

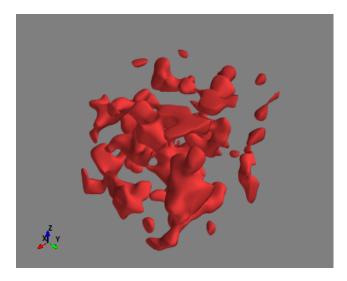
Excursion above 0

Gaussian Kinematic Formula and the integral geometry of random sets



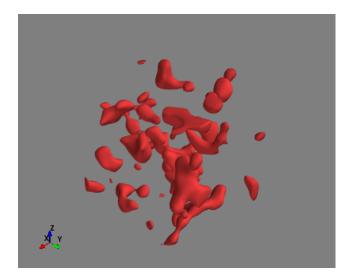
Excursion above 1

Gaussian Kinematic Formula and the integral geometry of random sets



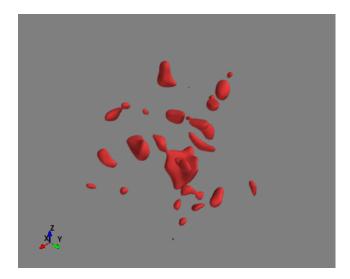
Excursion above 1.5

Gaussian Kinematic Formula and the integral geometry of random sets



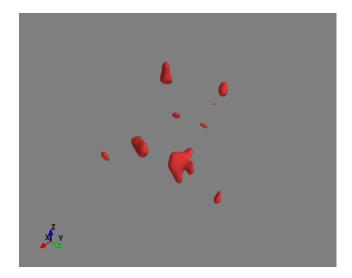
Excursion above 2

Gaussian Kinematic Formula and the integral geometry of random sets



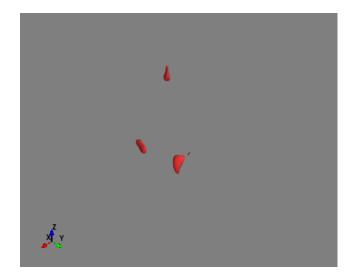
Excursion above 2.5

Gaussian Kinematic Formula and the integral geometry of random sets



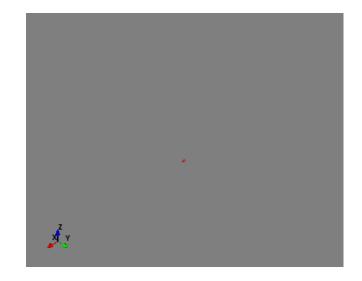
Excursion above 3

Gaussian Kinematic Formula and the integral geometry of random sets



Excursion above 3.3

Gaussian Kinematic Formula and the integral geometry of random sets



Euler characteristic

Gaussian Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

What geometric features?

We're interested in integral geometric properties. Specifically, the (expected) Euler characteristic

$$\mathbb{E}\left\{\chi\left(f^{-1}[u,+\infty)\right)\right\}=\mathbb{E}\left\{\chi\left(M\cap f^{-1}[u,+\infty)\right)\right\}$$

EC tells you very little

Let M be a 2-manifold without boundary, then

$$\mathbb{E}\left\{\chi\left(M\cap f^{-1}[0,+\infty)\right)\right\}=\frac{1}{2}\cdot\chi(M)$$

With boundary:

$$\mathbb{E}\left\{\chi\left(M\cap f^{-1}[0,+\infty)\right)\right\} = \frac{1}{2}\cdot\chi(M) + \frac{1}{2\pi}\cdot|\partial M|$$

Euler characteristic

Gaussian Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

EC is computable

Of all quantities in the studies of Gaussian processes, the EC stands out as being *explicitly computable* in wide generality

$$\mathbb{E}\left\{\chi\left(M\cap f^{-1}[u,+\infty)\right)\right\}=\sum_{j=0}^{\dim(M)}\mathcal{L}_{j}(M)\rho_{j}(u).$$

P / . . .

Where do \mathcal{L}_j 's and ρ_j 's come from?

EC tells you a lot

For "nice enough" M

$$\mathbb{E}\left\{\chi\left(M\cap f^{-1}[u,+\infty)\right)\right\} \stackrel{u\to\infty}{\simeq} \mathbb{P}\left\{\sup_{t\in M} f_t \geq u\right\}$$

Euler characteristic

Gaussian Kinematic Formula and the integral geometry of random sets

Accuracy

Jonathan Taylor Stanford University • If the parameter set is *locally convex*, then

$$\left| \mathbb{P} \left\{ \sup_{t \in M} f_t \ge u \right\} - \mathbb{E} \left\{ \chi \left(M \cap f^{-1}[u, +\infty) \right) \right\} \\ \stackrel{u \to \infty}{=} O_{\exp} \left(e^{-u^2/2 \cdot (1 + \frac{1}{\sigma_c^2(f)})} \right) \right.$$

• Since, $\rho_j(u) = O_{exp}(e^{-u^2/2})$, the approximation has *exponential* relative accuracy!

Integral geometry

Gaussian Kinematic Formula and the integral geometry of random sets

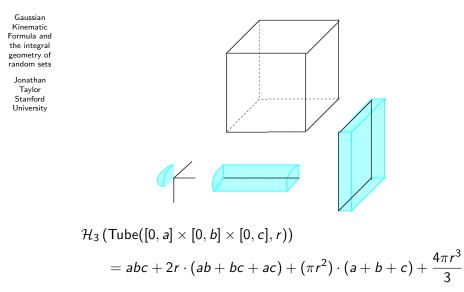
Jonathan Taylor Stanford University

Tube formulae

- Suppose f is (the restriction to M) of an isotropic process \tilde{f} , with Var $\left\{ d\tilde{f}/dx_i \right\} = 1$.
- For small r, the functionals L_j(M) are implicitly defined by Steiner-Weyl formula

$$\mathcal{H}_k\left(x\in\mathbb{R}^k:d(x,M)\leq r\right)=\sum_{j=0}^k\omega_{k-j}r^{k-j}\mathcal{L}_j(M;M)$$

Integral geometry: tubes



Integral geometry: tubes

Gaussian Kinematic Formula and the integral geometry of random sets

Integral geometry: tubes

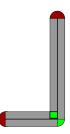
Gaussian Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Local convexity is important!

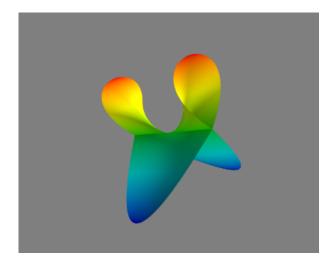
- Singularity means implicit definition is invalid, BUT

 L_i(·)'s are still well defined ...
- They are defined for a large class of sets

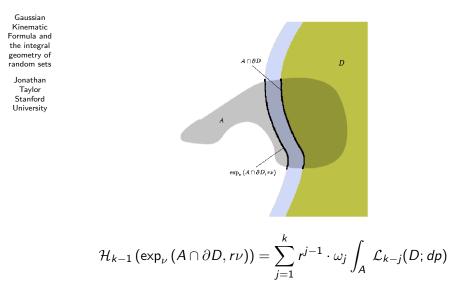


Gaussian processes

Gaussian Kinematic Formula and the integral geometry of random sets



Integral geometry: curvature measures



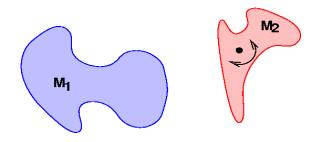
Integral geometry

Gaussian Kinematic Formula and the integral geometry of random sets

> Jonathan Taylor Stanford University

Kinematic Fundamental Formula

• Where else do we see $\mathcal{L}_j(\cdot)$'s?

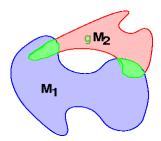


Integral geometry

Gaussian Kinematic Formula and the integral geometry of random sets

Kinematic Fundamental Formula

Jonathan Taylor Stanford University • Considers the "average" curvature measures of $M_1 \cap gM_2$, i.e.



Integral geometry: KFF

Gaussian Kinematic Formula and the integral geometry of random sets

> Jonathan Taylor Stanford University

The KFF on \mathbb{R}^N

• Isometry group G_N of rigid motions of \mathbb{R}^N ,

$$G_N \sim \mathbb{R}^N \rtimes O(N)$$

• Fix a Haar measure:

$$\nu_N\left(\{g_N\in G_N:g_Nx\in A\}\right) = \mathcal{H}_N(A)$$

$$\int_{G_N} \mathcal{L}_i \left(M_1 \cap g_N M_2 \right) \, d\nu_N(g_N) \\ = \sum_{j=0}^{N-i} \begin{bmatrix} i+j\\ i \end{bmatrix} \begin{bmatrix} N\\ j \end{bmatrix}^{-1} \mathcal{L}_{i+j}(M_1) \mathcal{L}_{N-j}(M_2)$$

Back to Gaussian processes

Gaussian Kinematic Formula and the integral geometry of random sets

Jonathan Taylor Stanford University

Analogy with KFF

• Recall what we were trying to study

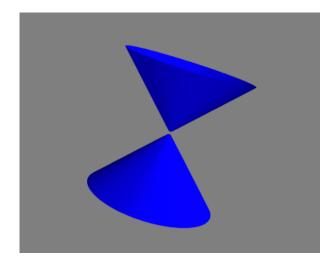
$$\mathbb{E}\left\{\chi\left(M\cap f^{-1}[u,+\infty)\right)\right\}$$

= $\int_{\Omega} \mathcal{L}_0(M\cap f(\omega)^{-1}[u,+\infty)) \mathbb{P}(d\omega)$
= $\sum_{j=0}^{\dim(M)} \mathcal{L}_j(M)\rho_j(u)$

- This *looks like* KFF on \mathbb{R}^N where $g_N M_2$ is replaced by $f^{-1}[u, +\infty) = f^{-1}D$.
- Can replace f with $f = (f_1, \ldots, f_j)$. Let's look at some examples ...

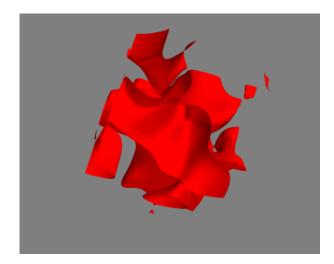
Gaussian processes: D a cone

Gaussian Kinematic Formula and the integral geometry of random sets



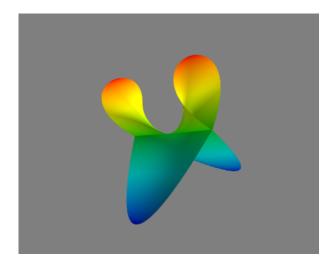
Gaussian processes: $f^{-1}D$

Gaussian Kinematic Formula and the integral geometry of random sets



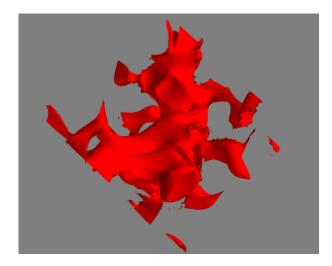
Gaussian processes: D a variety

Gaussian Kinematic Formula and the integral geometry of random sets



Gaussian processes: $f^{-1}D$

Gaussian Kinematic Formula and the integral geometry of random sets



Gaussian processes

Gaussian Kinematic Formula and the integral geometry of random sets

> Jonathan Taylor Stanford University

Gaussian Kinematic Formula

- Let $f = (f_1, \dots, f_k)$ be made of IID copies of a Gaussian field
- Consider the additive functional on \mathbb{R}^k that takes a "rejection region"

$$D\mapsto \mathbb{E}\left\{\chi\left(M\cap f^{-1}D\right)\right\}.$$

• **Questions:** how do the \mathcal{L}_j 's enter into this functional? How about *D*?

Gaussian processes

Gaussian Kinematic Formula and the integral geometry of random sets

Gaussian Kinematic Formula

Jonathan Taylor Stanford University

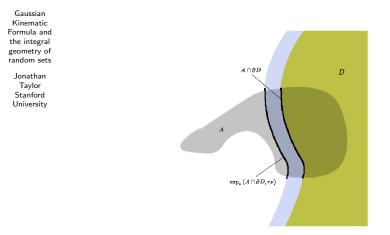
• Define the functionals $\mathcal{M}_{i}^{\gamma_{k}}(\cdot)$ implicitly by

$$\gamma_k\left(y\in\mathbb{R}^k:d(y,D)\leq r\right)=\sum_{j\geq 0}rac{(2\pi)^{j/2}r^j}{j!}\mathcal{M}_j^{\gamma_k}(D).$$

Then:

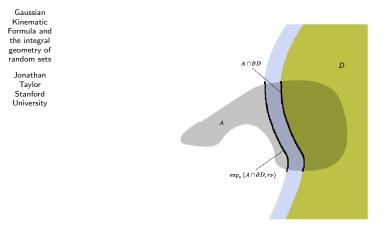
$$\mathbb{E}\left\{\chi\left(M\cap f^{-1}D\right)\right\}=\sum_{j}\mathcal{L}_{j}(M)\cdot\mathcal{M}_{j}^{\gamma_{k}}(D)$$

Integral geometry: curvature measures



Q: How do we compute $\mathcal{M}_{i}^{\gamma_{k}}(\cdot)$?

Integral geometry: curvature measures

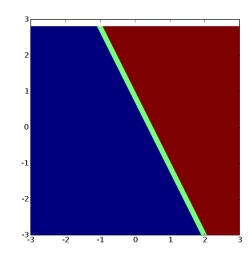


A: Integrate power series expansion for density over hypersurface at distance r ...

Example: linear statistic

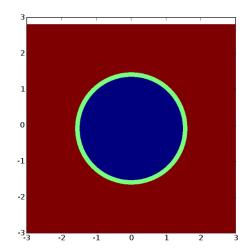
Gaussian

Stanford University



Example: χ^2 statistic

Gaussian Kinematic Formula and the integral geometry of random sets



Examples

Gaussian Kinematic Formula and the integral geometry of random sets

EC densities

Jonathan Taylor Stanford University

• Gaussian EC densities

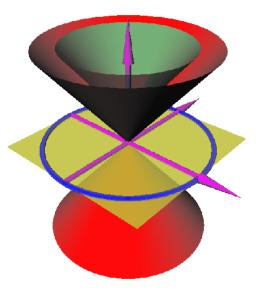
$$\rho_j(u) = (-1)^j \frac{d^j}{du^j} \mathbb{P}\left\{N(0,1) > u\right\}$$

• χ^2_k EC densities

$$\rho_{j,\chi_k^2}(u) = (-1)^j \frac{d^j}{dx^j} \mathbb{P}\left\{\sqrt{\chi_k^2} > x\right\} \Big|_{x=\sqrt{u}}$$

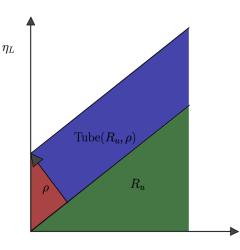
t or F statistic

Gaussian Kinematic Formula and the integral geometry of random sets



t or F statistic

Gaussian Kinematic Formula and the integral geometry of random sets



Ideas behind the proof

Gaussian Kinematic Formula and the integral geometry of random sets

Hidden embedding

Jonathan Taylor Stanford University • A Gaussian process is just a mapping

$$t\mapsto f_t\in L^2(\Omega,\mathcal{F},\mathbb{P})$$

- Our assumptions about mean and variance implies the image is in the unit sphere in L²(Ω, F, P), and it is an embedding.
- This suggests that the relevant "geometry" to prove this result is spherical.
- Short answer: yes.

Proof: spherical KFF

Gaussian Kinematic Formula and the integral geometry of random sets

Spherical KFF

۲

 $\bullet~\mbox{For}~\kappa\in\mathbb{R}$ define

Jonathan Taylor Stanford University

$$\mathcal{L}^{\kappa}(\cdot) = \sum_{n=0}^{\infty} \frac{(-\kappa)^n}{(4\pi)^n} \frac{(i+2n)!}{n!i!} \mathcal{L}_{i+2n}(\cdot).$$

For
$$M_1, M_2 \subset S_{n^{1/2}}(\mathbb{R}^n)$$

$$\int_{G_n} \mathcal{L}_i^{n^{-1}} (M_1 \cap g_n M_2) \, d\nu_{n,\lambda}(g_n)$$

$$= \sum_{j=0}^{n-1-i} {i+j \brack i} {n-1 \brack j}^{-1} \mathcal{L}_{i+j}^{n^{-1}}(M_1) \mathcal{L}_{n-1-j}^{n^{-1}}(M_2)$$

where $G_n = O(n)$, appropriately normalized.

Proof: Poincaré's limit

Gaussian Kinematic Formula and the integral geometry of random sets

> Jonathan Taylor Stanford University

Model process

• For $M \subset S(\mathbb{R}^j)$ define a \mathbb{R}^k valued process

$$f^n(t,g_n) = \pi_k(n^{1/2}g_nt)$$

where $g_n \in O(n)$ is a Haar-distributed random matrix and $\pi_k : S_{n^{1/2}}(\mathbb{R}^n) \to \mathbb{R}^k$ is projection onto the first k coordinates.

Poincaré's limit (and generalizations) ensures that the process fⁿ = (f₁ⁿ,..., f_kⁿ) converges in variation to a vector of IID zero mean, unit variance Gaussian processes f = (f₁,..., f_k).

Proof: connecting Gaussian processes with KFF

Gaussian Kinematic Formula and the integral geometry of random sets

Expected EC for model process
• For
$$D \subset \mathbb{R}^k$$

$$\int_{G_n} \mathcal{L}_i^1 \left(M \cap (f^n)^{-1}(D) \right) d\nu_{n,\lambda}(g_n)$$

$$= n^{-i/2} \int_{G_n} \mathcal{L}_i^{n^{-1}} \left(n^{1/2} M \cap \pi_k^{-1} D \right) d\nu_{n,\lambda}(g_n)$$

$$= c_n \sum_{j=0}^{n-1-i} {i+j \choose i} {n-1 \choose j}^{-1} \mathcal{L}_{i+j}^1(M) \mathcal{L}_{n-1-j}^{n^{-1}}(\pi_k^{-1} D)$$

- The set $\pi_{\iota}^{-1}D$ is the disjoint union of a warped product and $D \cap S_{n^{1/2}}(\mathbb{R}^k)$. Need to analyse curvatures of warped product asymptotically.
- The rest is combinatorics ... almost.