Complex nodes in Gaussian random waves: quantum waves. cosmology and optics

Mark Dennis

Department of Physics, University of Bristol, UK

The Leverhulme Trust

Main idea

Many physical wave fields
can be modelled using gaussian random functions

It is natural to try to characterise these fields in terms of nodal sets (zero

2π level sets)

For complex scalar fields in 2 dimensions, this defines a point process, and a line process in 3D

What can this tell us about the physics?

Outline

- Nodal points in quantum chaotic wavefunctions \& random vector fields
- Cosmic Microwave Background \& random complex polynomials
- Tangled nodal lines in 3D random optical waves

Outline

- Nodal points in quantum chaotic wavefunctions \& random vector fields
(Berry \& MRD, 2000; MRD 2003)
(Hohmann, Kuhl, Stockmann, Urbina, MRD 2009)

- Cosmic Microwave Background \& random complex polynomials
- Tangled nodal lines in 3D random optical waves

Quantum chaotic billiards

Motion of particle in 2D domain, specular reflection: 'billiard'

stadium: ergodic
what are eigenfunctions of the laplacian on these domains? (say Dirichlet bcs)

Bessel function eigenfunctions
$J_{n}\left(k_{n m} r\right) \cos (n \phi)$
eigenvalues from Bessel zeros

‘quantum chaos’ - also optics, acoustics, ...

Random wave model

Hypothesis (Berry 1977): a typical ergodic eigenfunction looks like a sample gaussian random function with $\langle f(0) f(r)\rangle=C(r)=J_{0}(r)$
original
conjecture was more general

Which is the stadium eigenfunction?

Test this hypothesis by comparing spatial averages of quantities in eigenfunctions with ensemble averages of gaussian random waves

Complex random waves

Ergodic systems without time reversal invariance have complex wavefunctions

The random wave model in this case is $\psi=f_{1}+\mathrm{i} f_{2}$, with f_{1}, f_{2} iid gaussian random functions

The complex nodes are vortices of probability current flow

Compare vortex density in measurements vs gaussian random model

Rice: Zeros of 1D real gaussian random function

$C(r)=J_{0}(r)$

Gaussian random function f is stationary, zero mean, unit variance, with 2-point correlation function

$$
\langle f(0) f(r)\rangle=C(r)
$$

density of point zeros

$$
d_{1}=\langle\delta(f)| f^{\prime}| \rangle \quad=\frac{\sqrt{\left|C_{0}^{\prime \prime}\right|}}{\pi}
$$

density of index
(sign of gradient)

$$
\left\langle\delta(f) f^{\prime}\right\rangle=0
$$

Gaussian random function zero correlation functions

 $g(r)=\frac{1}{d_{1}^{2}}\langle\delta(f(0))| f^{\prime}(0)|\delta(f(r))| f^{\prime}(r)| \rangle$ $\begin{gathered}\text { zero-zero } \\ \text { correlation function }\end{gathered} \quad=\frac{B(C)}{d_{1}^{2}}(1+A(C) \arctan A(C))$
zero index correlation function $g_{Q}(r)=\frac{1}{d_{1}^{2}}\left\langle\delta(f(0)) f^{\prime}(0) \delta(f(r)) f^{\prime}(r)\right\rangle=\frac{1}{2 \pi d_{1}^{2}} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}} \arccos C$

n-dimensional vector nodal density and index correlation

Consider nodal points of gaussian random vector fields $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$

Generalized Rice formula gives zero density

$$
\begin{aligned}
d_{n} & =\left\langle\delta^{n}(\boldsymbol{f})\right| \operatorname{det} \nabla \boldsymbol{f}| \rangle \\
& =\left|C_{0}^{\prime \prime}\right|^{n / 2} \frac{n!\operatorname{vol} B_{n}}{(2 \pi)^{n}}
\end{aligned}
$$

Index correlation function

mod signs removed

$$
\begin{aligned}
g_{Q}\left(r_{A B}\right) & =\frac{1}{d_{n}^{2}}\left\langle\delta^{n}\left(\boldsymbol{f}_{A}\right) \operatorname{det} \nabla \boldsymbol{f}_{A} \delta^{n}\left(\boldsymbol{f}_{B}\right) \operatorname{det} \nabla \boldsymbol{f}_{B}\right\rangle \\
& =\frac{(n-1)!}{(2 \pi)^{n} d_{n}^{2} r^{n-1}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(\frac{\mathrm{~d}}{\mathrm{~d} r} \arccos C\right)^{n}
\end{aligned}
$$

2D vortex-vortex correlation function

(Berry, MRD 2000)

$$
g\left(r_{A B}\right)=\frac{1}{d_{2}^{2}}\left\langle\delta^{2}\left(\psi_{A}\right)\right| \operatorname{det} \nabla \psi_{A}\left|\delta^{2}\left(\psi_{B}\right)\right| \operatorname{det} \nabla \psi_{B}| \rangle
$$

complicated

calculation (due to |-| signs) involves correlation function $C(r)$ and derivatives

$$
g(r) \underset{r \rightarrow \infty}{\longrightarrow} 1
$$

$g(R)=\frac{1}{d_{2}^{2}}\left\langle\delta\left(\xi_{A}\right) \delta\left(\eta_{A}\right)\right| \omega_{z, A}\left|\delta\left(\xi_{B}\right) \delta\left(\eta_{B}\right)\right| \omega_{z, B}| \rangle$
$=\frac{2\left(C^{\prime 2}+C_{0}^{\prime \prime}\left(1-C^{2}\right)\right)}{\pi C_{0}^{\prime \prime}\left(1-C^{2}\right)^{2}}\left(2 \sqrt{2-Y+2 Z}-\frac{i}{\sqrt{2 Z U}}\left[(4-U) Z F_{p}-4 Z E_{p}\right.\right.$
$\left.\left.+2 Y U \Pi_{p}+2 \sqrt{Z}\left(-(1+X+Y) F_{m}+U E_{m}+2 Y \Pi_{m}\right)\right]\right)$.
where $C_{0}^{\prime \prime} \equiv C^{\prime \prime}(0)=d_{2} / 2 \pi$, and

$$
\begin{align*}
& F_{p}=F(\mathrm{i} \operatorname{arcsinh}[\sqrt{V / 2}] \mid U / V), \\
& F_{m}=F(-\mathrm{i} \operatorname{arcsinh}[\sqrt{2 / V}] \mid V / U), \\
& E_{p}=E(\mathrm{i} \operatorname{arcsinh}[\sqrt{V / 2}] \mid U / V), \\
& E_{m}=E(-\mathrm{i} \operatorname{arcsinh}[\sqrt{2 / V}] \mid V / U), \tag{33}\\
& \Pi_{p}=\Pi(2 / V ; \mathrm{i} \operatorname{arcsinh}[\sqrt{V / 2}] \mid U / V), \\
& \Pi_{m}=\Pi(V / 2 ;-\mathrm{i} \operatorname{arcsinh}[\sqrt{2 / V}] \mid V / U),
\end{align*}
$$

where F, E, Π in (33) are the (incomplete) elliptic functions of the first, second and third kinds respectively (with the conventions for elliptic functions being those used by Mathematica ${ }^{27}$). Also,

$$
U=1+X-Y+Z
$$

$$
V=1-X-Y+Z
$$

$X=\frac{\left(C^{\prime 3}+C_{0}^{\prime \prime}\left(1-C^{2}\right)\left(C^{\prime}+R C^{\prime \prime}\right)+R C C^{\prime 2} C_{0}^{\prime \prime}\right)\left(C^{3}+C_{0}^{\prime \prime}\left(1-C^{2}\right)\left(C^{\prime}-R C^{\prime \prime}\right)-R C C^{\prime 2} C_{0}^{\prime \prime}\right)}{R^{2} C_{0}^{\prime 2}\left(C_{0}^{\prime \prime}\left(1-C^{2}\right)+C^{\prime 2}\right)^{2}}$,
$Y=\frac{C^{\prime 2}\left(C C^{\prime 2}+C^{\prime \prime}\left(1-C^{2}\right)\right)^{2}}{R^{2} C_{0}^{\prime 2}\left(C_{0}^{\prime \prime}\left(1-C^{2}\right)+C^{\prime 2}\right)^{2}}$,
$Z=\frac{\left(1-C^{2}\right)\left(R^{2} C_{0}^{\prime 2}-C^{\prime 2}\right)\left(C^{\prime 2}+(1-C)\left(C_{0}^{\prime \prime}+C^{\prime \prime}\right)\right)\left(C^{\prime 2}+(1+C)\left(C_{0}^{\prime \prime}-C^{\prime \prime}\right)\right)}{R^{2} C_{0}^{\prime 2}\left(C_{0}^{\prime \prime}\left(1-C^{2}\right)+C^{\prime 2}\right)^{2}}$.

Outline

- Nodal points in quantum chaotic wavefunctions \& random vector fields
- Cosmic Microwave Background \& random complex polynomials (MRD 2005, MRD \& Land 2008)
- Tangled nodal lines in 3D random optical waves

Cosmic Microwave Background (CMB)

Observational cosmology: Physics Nobel Prize 2006 (Smoot \& Mather) - all physics is in the spherical map of temperature fluctuations

$$
f(\theta, \phi)=\sum_{\ell=2}^{\infty} C_{\ell} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell}^{m}(\theta, \phi)
$$

THE BIG QUESTION

- what is the power spectrum C_{ℓ} ?

ANOTHER QUESTION

- does $f(\theta, \phi)$ have any
 other structure?
approach using Maxwell multipole vectors

Maxwell multipole vectors

Real eigenfunction of laplacian on sphere

$$
\begin{aligned}
f(\theta, \phi) & =\sum_{m=-\ell}^{\ell} a_{m} Y_{\ell}^{m}(\theta, \phi) \\
& =\mathrm{const} \times r^{2 \ell+1} D_{\boldsymbol{u}_{1}} \cdots D_{\boldsymbol{u}_{\ell}} \frac{1}{r}
\end{aligned}
$$

Maxwell multipole representation
$D_{u_{j}}$ directional
derivative, direction \boldsymbol{u}_{j}
r radial coord

$2 j$ directions $\pm \boldsymbol{u}_{j}$ correspond to complex roots, on Riemann sphere, of $\mathbf{S U}(\mathbf{2})$ polynomial:

$$
p_{f}=p(\zeta)=\sum_{m=-\ell}^{\ell} a_{m}(-1)^{\ell+m}\binom{2 \ell}{\ell+m}^{1 / 2} \zeta^{\ell+m}
$$

The CMB - a random spherical function?

Pick a particular mode labelled by ℓ,

$$
f_{\ell}=f(\theta, \phi)=\sum_{m=-\ell}^{\ell} a_{m} Y_{\ell}^{m}(\theta, \phi)
$$

Simplest cosmological theory suggests that coefficients a_{m} are independent, identically gaussian distributed (variance ℓ-dep?)

- only the norm $C_{\ell}^{2}=\sum_{m}\left|a_{m}\right|^{2}$ is determined not the direction in $2 \ell+1-\mathrm{D}$

Multipole vectors provide a basis-independent means of testing the data against this hypothesis

Spherical modes of the CMB

Concentrate attention on Maxwell's multipole vectors for modes with small ℓ (potential numerical problems for high ℓ)

total cleaned data

(Copi et al 2004, Land \& Magueijo 2005)

$$
2 \leq \ell \leq 8
$$

Statistically isotropic spherical functions

Any ensemble of spherical functions, of fixed ℓ, whose statistics depend only on the length $C_{\ell}^{2}=\sum_{m}\left|a_{m}\right|^{2}$, have equivalent multipole vector statistics

```
unitary invariant (not only rotation)
```

We can use any such distribution to calculate the statistics; it is convenient to choose the a_{m} independent
=> identically distributed gaussian variables (cf derivation of Maxwell distribution)
ensemble averaging

$$
\left\langle a_{m}^{*} a_{n}\right\rangle=\delta_{m, n} \quad \Rightarrow \quad \begin{array}{r}
\left\langle a_{m} a_{n}\right\rangle=(-1)^{m} \delta_{m,-n} \\
\text { since } a_{-m}=(-1)^{m} a_{m}^{*}
\end{array}
$$

Correlations between Maxwell's multipoles

Therefore want to find the statistics of the zeros of the random $\mathrm{SU}(2)$ polynomial
(related rand polys:
Bogomolny et al,
Hannay, Prosen 1996,...)

$$
p_{f}=p(\zeta)=\sum_{m=-\ell}^{\ell} a_{m}(-1)^{\ell+m}\binom{2 \ell}{\ell+m}^{1 / 2} \zeta^{\ell+m}
$$

$$
a_{-m}=(-1)^{m} a_{m}^{*}
$$

with the a_{m} coefficients iid gaussians

$$
\begin{aligned}
& =>\quad\left(\text { with } p_{i} \equiv p\left(\zeta_{i}\right), \ldots\right) \\
& \left\langle p_{i}^{*} p_{j}\right\rangle=\left(1+\zeta_{i}^{*} \zeta_{j}\right)^{2 \ell} \quad\left\langle p_{i} p_{j}\right\rangle=\left(\zeta_{i}-\zeta_{j}\right)^{2 \ell}
\end{aligned}
$$

... other correlations (involving $p_{i}^{\prime} \equiv \mathrm{d} p / \mathrm{d} \zeta_{\zeta_{i}}$, etc)

2-point multipole vector correlation function

set the 2 points to be $\zeta_{1}=0, \zeta_{2}=r$ (real); then

$$
\begin{aligned}
\rho_{2}(0, r)=\left(\pi^{2}\right. & \left.D^{5 / 2}\right)^{-1}\left(\left(2 \ell D-4 b u v-\left(b^{2}+v^{2}\right)\left(a-1-u^{2}\right)\right)\right. \\
& \times\left(d D-2 c u v\left(a+1-u^{2}\right)-\left(c^{2}+a v^{2}\right)\left(a-1-u^{2}\right)\right) \\
& +\left(2 \ell D-2 c u v-b u v\left(a+1-u^{2}\right)-v^{2}\left(a-1+u^{2}\right)-b c\left(a-1-u^{2}\right)\right)^{2} \\
& \left.+\left(w D-2 b c u-u v^{2}\left(a+1-u^{2}\right)-b v\left(a-1+u^{2}\right)-c v\left(a-1-u^{2}\right)\right)^{2}\right)
\end{aligned}
$$

with $D=\operatorname{det} \mathbf{A}=\left(a-1-u^{2}-2 u\right)\left(a-1-u^{2}+2 u\right)$ and

$$
\begin{gathered}
a=\left(1+r^{2}\right)^{2 \ell}, b=2 \ell r, c=2 \ell r\left(1+r^{2}\right)^{2 \ell-1}, d=2 \ell\left(1+2 \ell r^{2}\right)\left(1+r^{2}\right)^{2 \ell-2} \\
u=r^{2 \ell}, v=-2 \ell r^{2 \ell-1}, w=-2 \ell(2 \ell-1) r^{2 \ell-2}
\end{gathered}
$$

on Riemann/direction sphere (angular separation θ),

$$
\rho_{2}(\theta)=\frac{27\left(1-\cos ^{2} \theta\right)}{2\left(3+\cos ^{2} \theta\right)^{5 / 2}} \text { for } \ell=2
$$

2-pole correlation function for higher ℓ

Other ℓ...
(always symmetric
about $\theta=90^{\circ}$)

In high- ℓ limit, $\rho_{2}(0, r)$ approaches $g\left(\ell^{1 / 2} r\right)$, where

$g(R)=\frac{\left(\sinh ^{2} R^{2}+R^{4}\right) \cosh R^{2}-2 R^{2} \sinh R^{2}}{\sinh ^{3} R^{2}}$
(found originally as limit for general random $\operatorname{SU}(2)$ polynomials with similar method - Hannay 1996)

Full l-pole joint probability distribution function

In terms of roots ζ_{i} on Riemann sphere/complex plane
modulus of polynomial discriminant (accounts for repulsion)

$$
\begin{aligned}
P_{\ell}\left(\left\{\zeta_{i}\right\}\right) & =\text { const } \times \frac{\prod_{i=1}^{\ell}\left|\zeta_{i}\right|^{-2} \prod_{1=i<k}^{2 \ell}\left|\zeta_{i}-\zeta_{k}\right|}{\left(\sum_{\sigma \in S_{2 \ell}} \prod_{i=1}^{2 \ell}\left(1+\zeta_{i} \zeta_{\sigma(i)}^{*}\right)\right)^{(2 \ell+1) / 2}} \\
& \text { sum over permutations of roots }
\end{aligned}
$$

Similar in form to general $\operatorname{SU}(2)$ polynomial (Hannay I996) and more general random polynomials (Bogomolny, Bohigas, \& Leboeuf I996)

Behaviour of cosmic multipoles $2 \leq \ell \leq 8$

Preferred orientation for 2 or 3 multipole axes is mutually orthogonal since they repel.

Observed multipoles apparently prefer $\sim 65^{\circ}$ orientation.

2-point function comparison for higher l

Quadrupole anisotropy of multipole vectors

Compare anisotropy of multipole vector distributions for different ℓ on an equal footing, using traceless part of moment of inertia tensor:

$$
\mathbf{Q}_{\ell}=\frac{1}{\ell} \sum_{i=1}^{\ell} \boldsymbol{u}_{i} \otimes \boldsymbol{u}_{i}-\frac{1}{3} \mathbf{1}_{3}
$$

anisotropy
$\alpha=\operatorname{Tr} \mathbf{Q}_{\ell}^{2}$

max eigenvalue/vector orientation and length

Outline

- Nodal points in quantum chaotic wavefunctions \& random vector fields
- Cosmic Microwave Background \& random complex polynomials
- Tangled nodal lines in 3D random optical waves
(O’Holleran, MRD \& Padgett 2008; submitted)

3D singularity topology in experimental speckle fields

Laser light, randomized by propagation through ground glass screen

transverse $x y$ section
in rescaled coordinates, distribution of tangent directions is isotropic

surfaces enclose intensities over 50\% maximum

Singularity densities in gaussian random wave superpositions

usual model for fully developed speckle: superposition of plane waves with independent random directions and phases central limit theorem
field limits to gaussian random function

statistics completely determined by power spectrum, chosen here to be gaussian $\exp \left(-K_{r}^{2} \Lambda^{2} / 2\right)$
(Fourier transform is 2-point field correlation function by Wiener-Khinchin theorem)

Numerical singularity line tangle

Periodic 3D cell, superposed 27×27 Fourier grid 729 wave superposition, Gaussian spectrum

Distinguish closed loops (white) from periodic lines (red)
ratio
~ $73: 27$

Singularity line fractality

Scaling of arclength L against pythagorean distance R
100 lines from different simulations

nodal lines in random waves appear to be brownian curves

Loop length distribution

27\% of the lines in the tangle are closed loops

What is the loop length distribution?

Loop length scaling

log-log histogram of loop lengths for ~80 000 loops from different runs

Cubic lattice model of \mathbb{Z}_{3} phases modelling cosmic strings

Gradient of $-5 / 2$ consistent with brownian fractality and global scale invariance

Random singularity topology

Scaling of closed loop size (radius of gyration)

Probability of loop being threaded by another line increases with loop size

$\log L(\Lambda)$

threading by periodic line

Hopf link

$$
\begin{aligned}
& \text { One } \\
& \text { 3-loop } \\
& \text { link } \\
& \text { found }
\end{aligned}
$$

Random topology scaling

Probability of being unthreaded
A depends on type of threading

No self-threadings,
i.e. knots, found

