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Many physical wave fields 
can be modelled using 
gaussian random functions

It is natural to try to 
characterise these fields in 
terms of nodal sets (zero 
level sets)

For complex scalar fields in 2 dimensions, this defines 
a point process, and a line process in 3D

arg

Main idea

What can this tell us about the physics?
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(Berry & MRD, 2000; MRD 2003)
(Hohmann, Kuhl, Stockmann, Urbina, MRD 2009)



Jn(knmr) cos(nφ)

Quantum chaotic billiards

Motion of 
particle in 2D 
domain, specular 
reflection: 
‘billiard’

circle: integrable stadium: ergodic

what are eigenfunctions 
of the laplacian on 
these domains? 
(say Dirichlet bcs)

‘quantum chaos’ - also optics, acoustics, ...

Bessel function 
eigenfunctions

eigenvalues from 
Bessel zeros



Random wave model
Hypothesis (Berry 1977): a typical ergodic 
eigenfunction looks like a sample gaussian random 
function with 〈f(0)f(r)〉 = C(r) = J0(r)

Which is the stadium eigenfunction?

original 
conjecture was 
more general

Test this hypothesis by comparing 
spatial averages of quantities in 
eigenfunctions with ensemble 
averages of gaussian random waves

approx 2000th eigenfunction

next eigenfunction



Complex random waves

Ergodic systems without time reversal 
invariance have complex wavefunctions

experiment

The complex nodes are vortices 
of probability current flow

The random wave model in this case 
is                    , with    ,     iid 
gaussian random functions

ψ = f1 + if2 f1 f2

Compare vortex density in 
measurements vs gaussian 
random model

(Hohmann 
 et al 2009)
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π

〈f(0)f(r)〉 = C(r)

〈δ(f)f ′〉 = 0

Rice: Zeros of 1D real gaussian 
random function (Rice 1944,1945)

density of point zeros d1 = 〈δ(f)|f ′|〉

C(r) = J0(r)

Gaussian random function  
  is stationary, zero mean, 
unit variance, with 2-point 

correlation function

f

density of index
(sign of gradient)
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g(r) = 1
d2
1
〈δ(f(0))|f ′(0)|δ(f(r))|f ′(r)|〉

gQ(r) = 1
d2
1
〈δ(f(0))f ′(0)δ(f(r))f ′(r)〉
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f : Rn −→ Rn

dn = 〈δn(f)| det∇f |〉

= |C ′′
0 |n/2 n! volBn

(2π)n

n-dimensional vector nodal density 
and index correlation

Consider nodal points of 
gaussian random vector fields

Assume                               
is iid, isotropic, stationary, 
zero mean, unit variance, ...

f = (f1.f2, . . . , fn)

Generalized Rice formula 
gives zero density

gQ(rAB) = 1
d2

n
〈δn(fA) det∇fAδn(fB) det∇fB〉

=
(n− 1)!

(2π)nd2
nrn−1

d
dr

(
d
dr

arccos C

)n

Index correlation function
mod signs removed



g(rAB) = 1
d2
2
〈δ2(ψA)| det∇ψA|δ2(ψB)| det∇ψB |〉

2D vortex-vortex correlation function
(Berry, MRD 2000)

complicated 
calculation (due to 
|•| signs) involves 
correlation function 
         and derivativesC(r)

g(r) −→
r→∞

1



gQ

g

Nodal correlation functions

g+–

g++
r

g

gQ r
oscillations
in phase

experiment

Hohmann et al 2009

Bessel correlation
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Cosmic Microwave Background (CMB)

Cleaned WMAP data 
(Tegmark et al)

Observational cosmology: Physics Nobel Prize 
2006 (Smoot & Mather) - all physics is in the 
spherical map of temperature fluctuations

COBE data

approach using 
Maxwell multipole 

vectors

f(θ, φ) =
∞∑

!=2

C!

!∑

m=−!

a!mY m
! (θ, φ)

THE BIG QUESTION 
- what is the power spectrum     ?C!

ANOTHER QUESTION 
- does            have any

other structure?
f(θ, φ)

WMAP ! = 5



f(θ,φ) =
!∑

m=−!

amY m
! (θ,φ)

= const× r2!+1Du1 · · · Du!

1
r

a−m = (−1)ma∗m

ζ = eiφ tan θ/2

Maxwell multipole vectors
Real eigenfunction of laplacian on sphere

Maxwell multipole representation 
Duj       directional 
derivative, direction uj

  radial coordr

    directions         correspond to complex roots, 
on Riemann sphere, of SU(2) polynomial:
2j ±uj

pf = p(ζ) =
!∑

m=−!

am(−1)!+m

(
2"

" + m

)1/2

ζ!+m



f! = f(θ,φ) =
!∑

m=−!

amY m
! (θ,φ)

The CMB - a random 
spherical function?

Multipole vectors provide a basis-independent means of 
testing the data against this hypothesis

Pick a particular mode labelled by  ,!

amSimplest cosmological theory suggests that coefficients      are 
independent, identically gaussian distributed (variance  -dep?)!

- only the norm                           is determined 
not the direction in 2l+1-D

C2
! =

∑
m |am|2



Spherical modes of the CMB

Cl

l

2 ≤ ! ≤ 8

(Copi et al 2004, 
Land & Magueijo 
2005)

total cleaned 
data

3 5

!
Concentrate attention on Maxwell’s multipole vectors for 
modes with small   (potential numerical problems for high  )!

2 ≤ ! ≤ 20



〈a∗man〉 = δm,n
〈aman〉 = (−1)mδm,−n

Statistically isotropic 
spherical functions 

unitary invariant (not only rotation)

=> identically distributed gaussian variables 
      (cf derivation of Maxwell distribution)

ensemble averaging

=>

Any ensemble of spherical functions, of fixed   , whose statistics 
depend only on the length                          , have equivalent 
multipole vector statistics

C2
! =

∑
m |am|2

We can use any such distribution to calculate the statistics; it is 
convenient to choose the      independentam

a−m = (−1)ma∗msince

!



〈p∗i pj〉 = (1 + ζ∗i ζj)2! 〈pipj〉 = (ζi − ζj)2!

pf = p(ζ) =
!∑

m=−!

am(−1)!+m

(
2"

" + m

)1/2

ζ!+m

Correlations between 
Maxwell’s multipoles 

Therefore want to find the statistics of the 
zeros of the random SU(2) polynomial

(related rand polys:
Bogomolny et al, 
Hannay, Prosen 1996,...) 

=>   (with                , ...)pi ≡ p(ζi)

... other correlations (involving                      , etc)p′
i ≡ dp/dζ|ζi

a−m = (−1)ma∗m
roots             antipodalζi, ζi+!with the      coefficients iid gaussiansam



2-point multipole vector 
correlation function

ζ1 = 0set the 2 points to be           ,            (real); thenζ2 = r

ρ2(θ) =
27(1− cos2 θ)

2(3 + cos2 θ)5/2
for # = 2

on Riemann/direction 
sphere (angular 
separation   ),θ



2-pole correlation function 
for higher l

(found originally as limit for general random SU(2) polynomials 
  with similar method - Hannay 1996)

Other   ...
(always symmetric 
about    =90º)

g(R) =
(sinh2 R2 + R4) cosh R2 − 2R2 sinhR2

sinh3 R2

θθ

θθ

In high-  limit,
approaches             ,
where 

ρ2(0, r)
g(!1/2r)

!

!

θ



P!({ζi}) = const×
∏!

i=1 |ζi|−2
∏2!

1=i<k |ζi − ζk|
(∑

σ∈S2!

∏2!
i=1(1 + ζiζ∗σ(i))

)(2!+1)/2

Full l-pole joint probability 
distribution function

Similar in form to general SU(2) polynomial (Hannay 1996) 
and more general random polynomials (Bogomolny, 
Bohigas, & Leboeuf 1996) 

modulus of polynomial discriminant (accounts for repulsion)

sum over permutations of roots

In terms of roots     on Riemann sphere/complex planeζi



2 ≤ ! ≤ 8
Behaviour of cosmic multipoles

2 3 4 5

6 7 8



<θCMB>= 65.4° 

Preferred orientation for 2 or 3 multipole axes is mutually 
orthogonal since they repel. 

Observed multipoles apparently prefer ~65° orientation.

θCMB = 68.6° 

l = 2 l = 3

CMB multipoles data comparison 
with Gaussian statistics



2-point function comparison 
for higher l

4 5

6

7

8



Quadrupole anisotropy 
of multipole vectors

max eigenvalue/vector
orientation and length

<α>

l

uncorr

gaussian <α>

CMB data

Compare anisotropy of multipole vector distributions for 
different   on an equal footing, 
using traceless part of 
moment of inertia tensor:

Q! =
1
!

!∑

i=1

ui ⊗ ui − 1
313

anisotropy
α = TrQ2

!

!
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3D singularity topology in 
experimental speckle fields 

Laser light, randomized 
by propagation through 

ground glass screen

in rescaled coordinates, 
distribution of tangent 
directions is isotropic surfaces enclose intensities 

over 50% maximum

transverse  xy sectionxy
propagation

zz



Singularity densities in gaussian 
random wave superpositions

usual model for fully developed speckle: 
superposition of plane waves with 

independent random directions and phases

field limits to gaussian 
random function

central limit 
theorem

(Fourier transform is 2-point field correlation 
function by Wiener-Khinchin theorem)

statistics completely determined by power 
spectrum, chosen here to be gaussian

exp(−K2
r Λ2/2)



Numerical singularity line tangle

Periodic 3D cell, superposed 27 x 27 Fourier grid 
729 wave superposition, Gaussian spectrum

Distinguish closed loops (white) 
from periodic lines (red)

ratio
~ 73 : 27



Singularity line fractality

 

100 lines from different simulations

gradient fit 0.52 ± .01

nodal lines in random waves appear to be 
brownian curves

Scaling of arclength L against 
pythagorean distance R   

L
R



Loop length distribution
27% of the lines in the tangle are closed loops

What is the loop length 
distribution?



Loop length scaling

 

log-log histogram of loop 
lengths for ~80 000 

loops from different runs

gradient –2.46 ± .02

(Vachaspati & Vilenkin 1984)

Gradient of –5/2 consistent 
with brownian fractality 

and global scale invariance

Cubic lattice model of Z3 
phases modelling cosmic strings

Z3

gradient
–2.6±.1



Random singularity topology
Scaling of closed loop size 

(radius of gyration)

Probability of loop being 
threaded by another line 
increases with loop size

z

x

gradient .52

threading by 
periodic line

Hopf link
One 

3-loop 
link

found



Random topology scaling

exp [ -(L-1.88) / 185 ]

exp [ -(L-1.15) / 30 ]P
(z

er
o
 s

cr
ew

 n
o
.)

L     

ln

Probability of being 
unthreaded ~ exp(−L/AΛ)

A depends on 
type of 

threading

A

Hopf link

all 
threadings

No self-threadings, 
i.e. knots, found




