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Abstract

These are the lecture notes for the Colloquium lectures to be held
in San Diego, january 2012. These lectures will discuss the relations
between free probability, random matrices, and combinatorics. They
will also show how these relations can be used to solve problems in
each of these domains. Even if related, we will try to make each lecture
independent of the others.

Introduction

Free probability is a theory initiated by D. Voiculescu in the eighties
that studies non-commutative random variables. It is equipped with
a notion of freeness, which is related with free products, and which
plays the same role as independence in standard probability. These two
ingredients allows to translate many problems from operator algebra
into words more familiar to probabilists, and eventually import tools
form probability theory to try to solve them.

It turns out that free probability is not only analogue to classical
probability but that there is a natural bridge between both ; it is gi-
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ven by random matrices with size going to infinity. Indeed, matrices
with size going to infinity provide a reach class of non-commutative
random variables, in fact it is still an open question whether all non-
commutative laws can be described in this way. Moreover, the notion
of freeness of two variables is related with the notion of independence
of the basis of the eigenvectors of the two underlying random matrices,
in the sense that one is uniformly distributed with respect to the other.
Thus random matrices, which in some sense pertain to the usual clas-
sical probability theory, are a source of inspiration in free probability,
and therefore in operator algebra.

On the other hand, random matrices are well known since the se-
venties to be related with the enumeration of maps, that is connected
graphs sorted by the genera of the surface in which they can be pro-
perly embedded. In fact ’t Hooft and Brézin-Itzykson-Parisi-Zuber sho-
wed that matrix integrals can be seen as generating functions for the
enumeration of maps, with the inverse of the dimension being the pa-
rameter governing the genus of the maps. Such matrix integrals, when
they converge, also define non-commutative laws in free probability.
Hence, it turns out that lots of non-commutative laws from free pro-
bability can be defined in terms of the enumeration of planar maps.
Reciprocally, free probability can help to analyze combinatorial ques-
tions related with the enumeration of planar maps. Maps with higher
genus appear as the correction to the limit and can be obtained by
some surgery from the latter ; hence the full expansion is based on the
first order which is related with free probability.

In these lectures, we will try to describe more precisely these rela-
tions between free probability, random matrices and the enumeration
of maps.

During the first lecture, we shall give the basics of free probability.
We will then see show some ideas from classical probability were im-
ported to try to answer central questions in operator algebras related
with isomorphisms between C∗ or von Neumann algebras.

The second lecture will concentrate on the relation with combi-
natorial objects, namely the enumeration of maps and the so-called
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topological expansion. Topological expansion are expansions of inte-
grals in terms of the number N of its parameters whose coefficients
can be interpreted as a generating functions for the enumeration of
maps. The relation with matrix integrals sometimes allows to study or
even compute these generating functions and hence solve the underlying
combinatorial question. We will see that this relation can be establi-
shed with usual Gaussian calculus and Feynman diagrams. However,
this relation is deeper and can be also deduced from the so-called loop
equations which are consequences of analytic tools such as integration
by parts. It is related with the non-commutative derivatives which have
themselves a combinatorial description. We shall see that this point of
view allows to show that many integrals, even not directly related with
random matrices, have a topological expansion.

The last lecture will show how to put together the previous ones in
order to solve a combinatorial problem motivated by physics, namely
the Potts model on random planar maps. It is based on the relation
between random matrices and loop models which elaborates on the
relation between random matrices and planar maps. The construction
of a matrix model related with loop models requires an additional idea
coming from subfactors theory and more precisely the construction of
the planar algebra of a bipartite graph given by V. Jones. Once this
construction is done, it turns out that miraculously the matrix model
can be computed at the large N limit, hence allowing to solve the initial
combinatorial question.

1 Free probability

Citing D. Voiculescu, “Around 1982, I realized that the right way to
look at certain operator algebra problems was by imitating some basic
probability theory. More precisely, in noncommutative probability theory
a new kind of independence can be defined by replacing tensor products
with free products and this can help understand the von Neumann al-
gebras of free groups. The subject has evolved into a kind of parallel to
basic probability theory, which should be called free probability theory.”
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Thus, Voiculescu’s first motivation to introduce free probability was
the analysis of the von Neumann algebras of free groups. One of his
central observations was that such groups can be equipped with tracial
states (also called traces), which resemble expectations in classical pro-
bability, whereas the property of freeness, once properly stated, can be
seen as a notion similar to independence in classical probability. This
led him to the statement

free probability theory=noncommutative probability theory+ free inde-
pendence.

These two components are the basis for a probability theory for
noncommutative variables where many concepts taken from probabi-
lity theory such as the notions of laws, convergence in law, indepen-
dence, central limit theorem, Brownian motion, entropy, and more can
be naturally defined. For instance, the law of one self-adjoint variable
is simply given by the traces of its powers (which generalizes the defi-
nition through moments of compactly supported probability measures
on the real line), and the joint law of several self-adjoint noncommu-
tative variables is defined by the collection of traces of words in these
variables. Similarly to the classical notion of independence, freeness is
defined by certain relations between traces of words. Convergence in law
just means that the trace of any word in the noncommutative variables
converges towards the right limit.

In this lecture, we will present the basics of free probability. Then
we will highlight a few uses of this theory to tackle the question of the
isomorphisms between C∗ and von Neumann algebra.

1.1 Non-commutative laws

To extend the notion of law (or probability measure) to a non-
commutative set up, one should consider classical laws say on Rd sim-
ply as linear functions on a set of test functions with values in R, for
instance the bounded continuous functions, the bounded measurable
functions or if one restricts oneself to compactly supported functions,
to polynomial functions. The additional requirements are that they are



5

non-negative, that is that the value of this linear map at any nonnega-
tive function is non-negative, and with mass one.

These concepts can all be extended to the non-commutative set-up.
Let us restrict ourselves to d bounded variables and consider the set of
polynomials

C〈X1, . . . , Xd〉 = {z0 +
∑

zpXip1
· · ·Xipnp

, i`k ∈ [1, d], np ∈ N∗, zi ∈ C}

as the set of test functions. Then, a law of d non-commutative variables
will be any linear form on C〈X1, . . . , Xd〉

τ : P ∈ C〈X1, . . . , Xd〉 → τ(P ) ∈ C . (1)

If the variables are assumed to be self-adjoint, we may endow C〈X1, . . . , Xd〉
with the involution(∑

zpXip1
· · ·Xipnp

)∗
=
∑

z̄pXipnp
Xipnp−1

· · ·Xip1
.

Non negative elements of C〈X1, . . . , Xd〉 can be written as PP ∗ for some
P ∈ C〈X1, . . . , Xd〉 (see e.g. [Mu90, Theorem 2.2.4]). The positivity
requirement is therefore

τ(PP ∗) ≥ 0 ∀P ∈ C〈X1, . . . , Xd〉 . (2)

The mass condition is simply

τ(1) = 1 . (3)

On the top of these conditions analogous to the classical setting, we
shall assume additionnally that non-commutative laws satisfy the so-
called tracial conditions

τ(PQ) = τ(QP ) ∀P,Q ∈ C〈X1, . . . , Xd〉

The most obvious example of such a law is given by matrices. Indeed,
if X = (X1, . . . , Xd) are N ×N Hermitian matrices then

τX(P ) :=
1

N
Tr(P (X1, . . . , Xd)) ∀P ∈ C〈X1, . . . , Xd〉
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defines a non-commutative law. If X = (X1, . . . , Xd) are random N×N
Hermitian matrices then

τX(P ) := E[
1

N
Tr(P (X1, . . . , Xd)]) ∀P ∈ C〈X1, . . . , Xd〉 (4)

also defines a non-commutative law. We shall call this law the empirical
distribution of (X1, . . . , Xd). In fact, any limit of such laws will also
define a non-commuative law, that is if (XN

1 , . . . , X
N
d ) is a sequence of

random N × N Hermitian matrices then if for all polynomial P the
limit

τ(P ) = lim
N→∞

τXN (P )

exists, the limit τ is as well a non-commutative law. It is still an open
question whether all non-commutative law can be constructed in this
way. We shall see later in these lectures notes that random matrices at
list provide a very useful bridge between classical probability and free
probability.

The notion of convergence of non-commutative laws will always refer
to weak convergence, that is a sequence τn, n ≥ 0 of non-commutative
laws of d variables converges towards a law τ iff for any polynomial
P ∈ C〈X1, . . . , Xd〉

lim
n→∞

τn(P ) = τ(P ) .

The notion of random variables also makes sense in this setting as
by the so-called Gelfand-Naimark-Segal (or GNS) construction, being
given a non-commutative law τ , one can always construct “random
variables” with law τ in the sense of constructing a Hilbert space H
equipped with a scalar product < ., . >H , a vector ξ in H and bounded
linear operators X̃1, . . . , X̃d on H so that for any polynomial P

< ξ, P (X̃1, . . . , X̃d)ξ >H= τ(P (X1, . . . , Xd)) . (5)

In this construction, one takes the set of polynomials and separate it
by quotienting by the left ideal τ(PP ∗) = 0. H is then obtained by
completing for the L2 norm under τ . The letters X1, . . . , Xd are seen
as left multiplication operators, and therefore as operators on H.
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1.2 C∗ algebras and W ∗-algebras

In classical probability theory, test functions can be taken to be
bounded continuous or bounded measurable, resulting with different
weak* topologies on the space of laws. The same holds in the non-
commutative case with the notions of C∗ algebras and W ∗-algebras
respectively.

We will restrict our discussion throughout to unital C∗-algebras
without further mentioning it. Thus, in the following, a C∗-algebra A
is a unital algebra equipped with a norm ‖ · ‖ and an involution ∗ so
that

‖xy‖ ≤ ‖x‖‖y‖, ‖a∗a‖ = ‖a‖2.

Recall that A is complete under its norm.

If one is given a non-commutative law τ of d bounded non-commutative
variables, one can associate a C∗-algebra by the Gelfand-Naimark-Segal
construction mentionned above. The variables are seen as bounded ope-
rators on a Hilbert space (namely left multiplication operators on the
set L2(τ)), the C∗ algebra is the set of polynomials in these variables
completed under the norm given by

‖P‖τ = lim
n→∞

τ ((PP ∗)n)1/2n .

A C∗ -algebra A ⊂ B(H) for some Hilbert space H is a von Neu-
mann algebra (or W ∗ -algebra) if it is closed with respect to the weak
operator topology. In the case of the von Neumann algebra associated
with a non-commutative law τ , one takes the C∗-algebra and complete
it for the weak topology in the associated Hibert space, see (5).

1.3 Freeness

Freeness is the non-commutative analogue of independence in pro-
bability. In some sense, probability theory distinguishes itself from inte-
gration theory by the notion of independence and of random variables
which are the basis to treat problems from a different perspective. Si-
milarly, free probability differentiates from noncommutative probability
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by this very notion of freeness which makes it a noncommutative ana-
logue of classical probability.

Independence of two families (x1, . . . , xp) and (y1, . . . , yd) can be
defined by saying that for any test functions f, g,

E[f(x1, . . . , xp)g(y1, . . . , yd)] = E[f(x1, . . . , xp)]E[g(y1, . . . , yd)]

or in other words that the expectation of the product of two test func-
tions in the x’s and the y’s respectively vanishes as soon as the expec-
tation of each test function vanishes.

Freeness is a natural extension of the notion of independence to non-
commutative variables ; we say that random variablesX = (X1, . . . , Xp)
and Y = (Y1, . . . , Yd) with joint law τ are free iff for any polynomials
P1, . . . , Pk ∈ C〈X1, . . . , Xp〉 and Q1, . . . , Qk ∈ C〈X1, . . . , Xd〉 so that
τ(Pi(X)) = 0 and τ(Qi(Y )) = 0 we have

τ(P1(X)Q1(Y )P2(X) · · ·Pk(X)Qk(Y )) = 0 . (6)

It is easy to check by induction over the degree that this relation
defines uniquely joint moments if the marginals are known.

The name of freeness is indeed related with the standard notion of
freeness for groups. Take φ to be the linear functional on A so that for
all g ∈ G, φ(g) = 1g=e. Then, if g1 and g2 satisfy the freeness relation
(6), they are free in the usual sense that you can not build non trivial
words in g1 and g2 that equals the neutral element. More precisely, let
G be generated by two free generateors g1, g2, that is elements of G
are of the form gn1

1 gm1
2 · · · g

np
1 g

mp
2 with ni 6= 0 for i ≥ 2 and mi 6= 0

for i ≤ p − 1. By freeness, gn1
1 gm1

2 · · · g
np
1 g

mp
2 6= e unless p = 1 and

n1 = m1 = 0.

Consider an orthonormal basis {vg}g∈G of `2(G), the set of sums∑
g∈G cgvg with cg ∈ C and

∑
|cg|2 < ∞. `2(G) is equipped with a

scalar product

〈
∑
g∈G

cgvg,
∑
g∈G

c′gvg〉 =
∑
g∈G

cg c̄
′
g ,
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which turns it into a Hilbert space. The action of each g′ ∈ G on `2(G)
becomes λ(g′)(

∑
g cgvg) =

∑
g cgvg′g, yielding the left regular represen-

tation determined by G, which defines a family of unitary operators on
`2(G). These operators are determined by λ(g)vh = vgh. By definition
φ(λ(g)) = 1g=e defines by linearity a tracial state. Moreover by freeness
φ(gn1

1 gm1
2 · · · g

np
1 g

mp
2 ) = 0 as soon as ni 6= 0 for i ≥ 2 and mi 6= 0 for

i ≤ p − 1, that is as soon as φ(gni1 ) = 0, i ≥ 2 and φ(gmi2 ) = 0 for
i ≤ p. Since this relation extends by linearity we conclude that λ(g1)
and λ(g2) are free in the free probability sense.

1.4 The semi-circle law

In classical probability, the normal (or Gaussian) law plays a very
particular role as it describes the fluctuations of many models. Indeed,
the sum of independent variables with finite second moment converges
when the number of variables goes to infinity, once properly centered
and renormalized, towards the Gaussian law. Therefore, the Gaussian
law describes many models in probability.

Similarly, if one sums bounded free variables, recenters and renorma-
lizes, one will see a universal law appearing, but this will not be the
normal law but the semi-circle law.
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More precisely, we have (see [Voi91] and [AGZ10][Section 5.3.4]) :

Theorem 1.1 Let {ai}i∈N be a family of free self-adjoint random va-
riables in a noncommutative probability space with a tracial state φ.
Assume that for all k ∈ N,

sup
j
|φ(akj )| <∞. (7)

Assume φ(ai) = 0, φ(a2
i ) = 1. Then,

XN =
1√
N

N∑
i=1

ai

converges in law as N goes to infinity to a standard semicircle distri-
bution.

The semicircle law σ is given by

σ(dx) =
√

4− x2dx/π .

Eventhough this does not look like the Gaussian law it is deeply connec-
ted to it by the combinatorial characterization of its moments. Indeed,
the moment of a centered Gaussian vector (G1, . . . , G2n) is characteri-
zed by Wick formula

E[G1G2 · · ·G2n] =
∑

1≤s1<s2..<sn≤2n
ri>si

n∏
j=1

E[GsjGrj ].

Wick formula shows that Gaussian expectation are described by pair
partitions, that is matching. This description was used by Feynman to
represent Gaussian integration by diagrams, hence allowing a combina-
torial point of view on many integrals. In particular, if Gi = G follows
the standard Gaussian distribution

E[Gp] = #{ pair partitions of p ordered points}
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The semicircle law has a similar description but in terms of non-
crossing partition. Indeed,∫

xpdσ(x) = #{ non-crossing pair partitions of p ordered points} .

A non-crossing pair partition is a pair partition of ordered points so
that if (a, b) and (c, d) are two blocks of the partition so that a < c,

a < b < c < d or a < c < d < b .

In other words, if we represent the blocks of the partitions by arcs, it
can be done so that the arcs do not intersect.

The proof of Theorem 1.1 is straightforward once one is aware of the
combinatorial description of σ. Indeed, it is enough to show that for all
p ∈ N

lim
N→∞

φ

(
(

1√
N

N∑
i=1

ai)
p

)
=

∫
xpdσ(x) .

But when expanding the left hand side

φ

(
(

1√
N

N∑
i=1

ai)
p

)
=

1

N
k
2

N∑
i1,...,ip=1

φ(ai1 · · · aip)

we see that the terms in the right hand side vanishes by freeness ex-
cept if each index ik appears at list twice as the ai are centered. But
this means at most Nk/2 indices contribute. As we divide by this quan-
tity we see that sets of indices where an index is repeated more than
twice will be neglectable. Hence, we may concentrate on the case where
indices are repeated exactly twice. But then, by freeness, the contribu-
tion will also vanish except if the indices are paired by a non crossing
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partition. Indeed for a term to contribute, there must be a couple of
neighbors indices ipip+1 which are equal. Since all other indices have
to be different by the previous point, we can remove their expecta-
tion by freeness. We then can continue inductively to see that the
partition must be constructed inductively by pairing neighbors ; this
is exactly the construction of non-crossing partitions. Hence, the right
hand side converges towards the number of non-crossing pair partitions
of p points.

For later uses, we may represent the p points of the partition as the
end point of half-edges of a vertex with valence p, drawn on the sphere
with one marked half-edge. Non crossing pair partitions then become
matchings of the end points of these half-edges so that the graph is
properly embedded into the sphere (that is drawn into the sphere so
that no edges intersect).

We next see how non-crossing partitions arise in random matrix
theory.

1.5 Random matrices and freenesss

Random matrices played a central role in free probability since Voi-
culescu’s seminal observation that independent Gaussian Wigner ma-
trices converge in distribution as their size goes to infinity to free semi-
circular variables. This result can be extended to approximate any law
of free variables by taking diagonal matrices and conjugating them by
independent unitary matrices (see [AGZ10][ section 5.4]). To be more
precise, let XN be a matrix following the Gaussian Unitary Ensemble,
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that is a N ×N Hermitian matrix with i.i.d centered Gaussian entries
with covariance N−1, that is

XN(k`) = X̄N(`k) =
1√
2

(xk` + iyk`) 1 ≤ k ≤ ` ≤ N

XN(kk) = xkk 1 ≤ k ≤ N

with

dPN(XN) =
1

ZN
exp{−N

2

∑
k≤`

(x2
k` + y2

k`)}
∏

dxk`dyk`

=
1

ZN
exp{−N

2
Tr((XN)2)}dXN

Then Wigner [Wig55] showed the following.

Theorem 1.2 (Wigner) For any p ≥ 0

lim
N→∞

E[
1

N
Tr((XN)p)] =

∫
xpdσ(x) .

However, the relation of random matrices and freeness was discovered
much later by Voiculescu [Voi91]. A central result is the following.

Theorem 1.3 (Voiculescu) For any polynomial P ∈ C〈X1, · · · , Xd〉

lim
N→∞

E[
1

N
Tr(P (XN

1 , · · · , XN
d ))] = σd(P )

exists. σd is the law of d free semi-circular law.

The proof of these two results relies on Wick calculus which in fact
provides not only the asymptotic of traces of words in random matrices
but also the whole N expansion. Let us first consider the d = 1 case.
Then, one just expands the trace in terms of the matrix entries

E[
1

N
Tr((XN)p)] =

1

N

N∑
i(1),...,i(p)=1

E[XN
i(1)i(2)X

N
i(2)i(3) · · ·XN

i(p)i(1)] .
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Using Wick formula together with E[XN
ijX

N
k`] = N−11ij=`k, one gets

E[XN
i(1)i(2) · · ·XN

i(p)i(1)] =
1

Np/2

∑
pair partition

∏
(k,`)block

1i(p)i(p+1)=i(`+1)i(`)

The later matching can be more conveniently represented by seeing the
Gaussian entries as the end points of half-edges of a vertex with valence
p with one marked vertex

i(1)

i(1)         i(2)

i(2)

i(3)

i(3)

i(4)

i(4)i(5)

i(5)

i(6)

i(6)

A face is obtained by cutting the graph along the edges. As E[XN
ijX

N
k`] =

N−11ij=`k, only matchings so that indices are constant along the boun-
dary of the faces contribute.Hence, since indices take any value between
1 and N ,

E[
1

N
Tr((XN)p)] =

∑
graph 1 vertex

degree p

N#faces−p/2−1 (8)

But, by Euler formula, any connected graph satisfies that its genus is
given by

2− 2g = #{vertices}#{faces} −#{edges} = 1 + #{faces} − p/2

so that
#faces− p/2− 1 = −2g ≤ 0

with equality only if the graph is planar. Hence

lim
N→∞

E[
1

N
Tr((XN)p)] = #{planar graph with 1 vertex with degree p}
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A similar strategy can be used when one deals with several GUE
matrices. To extend this graphical view point, one needs to associate
(bijectively) to any word in d non-commutative variables either ordered
colored points or a “vertex with colored half-edges” in order to make the
difference between the different matrices in the word. Namely, associate
to

q(X1, . . . , Xd) = Xi1Xi2 · · ·Xip

a “star of type q” given by the vertex with p colored half-edges drawn
on the sphere so that the first branch has color i1, the second of color
i2 etc until the last which has color ip. For instance, if q(X1, X2) =
X2

1X
2
2X

4
1X

2
2 and 1 is associated to red whereas 2 is associated with

blue, the star of type q is a vertex with first two half-edges which are
red, then two blue, four red and finally two blue.

Then

σd(q) = lim
N→∞

E[
1

N
Tr(q(XN

1 , X
N
2 , · · · , XN

d ))]
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is the number of planar graphs build on a star of type q by matching
only branches of the same color.

Indeed, the very same arguments hold, except that since the cova-
riance between entries of two different matrices vanishes, pairing bet-
ween half-edges of different colors do not contribute to the sum.

In fact, it is not hard to see that σd is the law of free variables.
Indeed, it is enough to verify the property for a monomial q whose
decomposition into free components has been reentered, that is

q = (q1(Xi1)−σd(q1(Xi1)))(q2(Xi2)−σd(q2(Xi2))) · · · (q`(Xi`)−σd(q1(Xi`)))

with ip 6= ip+1. If we call S1, . . . , S` the successive sets of half-edges of
the same color (but so that Sk and Sk+1 are sets of different color for all
k) in the star of type q, then any planar map is such that there exists
a k ∈ {1, . . . , `} so that the half-edges of Sk only match among them-
selves (and not with half-edges of Sj, j 6= k). But then this contribution
vanishes due to the centering. Hence σd(q) = 0.

1.6 More general laws

Let V be a polynomial in d non-commutative variables which is
self-adjoint in the sense that V (X1, . . . , Xd) = V (X1, . . . , Xd)

∗ for any
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self-adjoint variables and set for M > 0 large enough

PNV (dXN
1 , . . . , dX

N
d ) =

1‖XN
i ‖≤M

ZN
V,M

e−NTr(V (XN
1 ,...,X

N
d ))dXN

1 · · · dXN
d

where ‖X‖ denotes the spectral radius of the matrix X. As V is self-
adjoint, the above measure has a real density. Then, it was proved in
[GMS06] that if M > 2 is fixed and V − 1

2

∑
X2
i is small, the empirical

distribution τXN of (XN
1 , . . . , X

N
d ) under PNV (see (4)) converges. This

result was generalized in [GS09] to “locally convex potential”. We say
that V is (c,M) convex if for any N , NTrV (X1, . . . , Xd) has Hessian (as
a function of the entries of the matrix) bounded below by Nc for some
c > 0, when evaluated at any self-adjoint matrices so that ‖Xi‖ ≤ M .
Then it was proved that

Theorem 1.4 Let c > 0 be fixed. Then, there exists M(c) <∞ so that
if M ≥ M(c) and V is (c,M) convex, there exists a non-commutative
law τV so that for any polynomial P

τV (P ) = lim
N→∞

∫
1

N
Tr(P (XN

1 , . . . , X
N
d ))dPNV (XN

1 , . . . , X
N
d )

Note that small perturbations of the quadratic potential satisfy our
local convexity property. The cutoff M is only needed to make the inte-
gral converges ; in fact if V is strictly convex, that is is (c,∞), then the
cutoff can be removed. The convergence of the empirical distribution
of matrices corresponding to laws PNV with potential V which does not
satisfy such a convexity property is still a wide open problem.

However, there exists natural non-commutative laws which are des-
cribed as limits as in the above theorem. This is indeed the case of
q-Gaussian laws according to Dabrowski [Dab10].

A d-tuple of q-Gaussian variables is such that

τq,d(Xi1 · · ·Xip) =
∑
π

qi(π) ∀ik ∈ {1, · · · , d}

where the sum runs over pair partitions of colored dots whose block
contains dots of the same color and i(π) is the number of crossings. For
instance the figure below has i(π) = 4.
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Here, the ordered colored dots are equivalent to colored stars, that is
are in bijection with monomials.

Theorem 1.5 (Dabrowski (2010)) If dq is small enough, there exists
Vq,d = 1/2

∑
X2
i +Wq,d with Wq,d self-adjoint and small so that

τq,d(P ) = lim
N→∞

∫
1

N
Tr(P (XN

1 , . . . , X
N
d ))dPNVq,d(X

N
1 , . . . , X

N
d )

1.7 The conjugate variables

One of the central difference between classical probability and free
probability is the absence of notion of density in the latter. It turns
out that a way to replace this notion is by integration by parts. Indeed,
if P is a probability measure on R, one way to characterize that it
is absolutely continuous with respect to Lebesgue measure and with
density e−V (x) with respect to Lebesgue measure for a smooth functionn
V is to show that for any smooth test function f , we have∫

f(x)V ′(x)dP (x) =

∫
f ′(x)dP (x) .

This notion can be extended to the free probability setting. To get
some intuition about what such an integration by parts should be,
let us consider the non-commutative laws discussed in the previous
section. Define the cyclic gradient as the linear derivative on the set of
polynomial whose restriction to monomials is given by

Di(Xi1 · · ·Xip) =
∑
i`=i

Xi`+1
· · ·XipXi1 · · ·Xi`−1

and observe that for any (sr) ∈ {1, . . . , N}2, since in the complex set-
ting ∂Xi(sr)Xj(s

′r′) = 1i=j1sr=r′s′ ,

∂Xi(sr)Tr(P (X1, . . . , Xd)) = (DiP )(X1, . . . , Xd)(sr) .
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Moreover, define the non-commutative derivative ∂i by

∂i(Xi1 · · ·Xip) =
∑
i`=i

Xi1 · · ·Xi`−1
⊗Xi`+1

· · ·Xip

and observe similarly that

∂Xi(sr)(P (X1, . . . , Xd))(s
′r′) = (∂iP )(X1, . . . , Xd)(s

′r, sr′) .

Therefore the classical integration by parts yields, at least when no
cutoff is present, the following formula for any polynomial function P
and any sr, s′r′

N

∫
P (s′r′)(DiV )(sr)dPNV =

∫
P (s′r′)∂Xi(sr)NTr(V )dPNV (XN

1 , . . . , X
N
d )

=

∫
∂Xi(sr)P (s′r′)dPNV (XN

1 , . . . , X
N
d )

=

∫
(∂iP )(s′r, sr′)dPNV (XN

1 , . . . , X
N
d ) (9)

Taking r′ = s and s′ = r and summing over the indices yields the
so-called Schwinger-Dyson (or loop) equation∫

1

N
Tr(PDiV )dPNV (XN

1 , . . . , X
N
d ) (10)

=

∫
1

N
Tr⊗ 1

N
Tr(∂iP )dPNV (XN

1 , . . . , X
N
d ) .

Since we restrict ourselves to the case where the measure dPNV (XN
1 , . . . , X

N
d )

as a strictly log-concave density and that for any polynomials P ,
1
N

Tr(P (X1, . . . , Xd)) is a Lipschitz function of the entries (at least when
their spectrum radius is bounded) one finds by concentration of measure
(see [GZ06, AGZ10, Gu09]) that for any polynomial P there exists a
finite constant C(P ) so that∫ ∣∣∣∣ 1

N
Tr(P )−

∫
1

N
Tr(P )dPNV

∣∣∣∣2 dPNV ≤ C(P )

N2
. (11)
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Therefore, (9) yields, as
∫

1
N

Tr(P )PNV (dXN
1 , . . . , dX

N
d ) converges to-

wards τV (P ) for all N , that for all polynomial P and all i ∈ {1, . . . , d}

τV (PDiV ) = τV ⊗ τV (∂iP ) (12)

This is the natural analogue of classical integration by parts and in fact,
as we have just seen, it can be seen as a limit of classical integration
by parts at least for the laws described in the previous part as limits
of random matrices. When V is locally strictly convex, Equation (12)
as a unique solution [GMS06, GS09] and characterizes therefore τV .
Moreover, the convergence of the empirical distribution of the random
matrices following PNV towards τV can be proved by using this unique-
ness and the fact that any limit point has to satisfy this equation.

Conjuguate variables are just defined so that such a formula holds,
namely given a non-commutative law τ , its conjugate variables ξi, 1 ≤
i ≤ d are simply the elements of the W ∗ algebra so that for all polyno-
mials P

τ(Pξi) = τ ⊗ τ(∂iP ) .

In particular we see that τV has DV has conjugate variables.

1.8 The isomorphism problem

One of the motivations of Voiculescu to construct free probability
was in fact to disprove the isomorphism problem of free group factors.
Let us consider the von Neumann algebra L(F ∗m) generated by m free
semi-circle variables. The isomorphism problem asks if these are iso-
morphic for different numbers of generators. It can be written in the
free probability framework in terms of transport maps by wondering
for m 6= n whether there exists functions G = (Gi)1≤i≤n and (Fj)1≤j≤m
so that

σm(P ) = σn (P (F1(S1, . . . , Sn), . . . , Fm(S1, . . . , Sn)))

σn(Q) = σn (Q(G1(S1, . . . , Sm), . . . , Gn(S1, . . . , Sm)))

In the commutative setting it is known since von Neumann (1932) that
such a mapping exists ; as soon as one considers two probability mea-
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sures which are for instance absolutely continuous with respect to Le-
besgue measure, there exists measurable functions which map one on
the other and vice-versa (in fact this is true in much greater generality).
This is still an open question in the non-commutative setting. In the
next sections we will describe a few attempts that were made to attack
this question in free probability.

1.9 Transport theory

If the theory of existence of transport maps indeed goes back to
von Neumann who was interested in more general isomorphisms results
between von Neumann algebra, the theory of optimal transport is in
fact more ancient and goes back to Monge. In the following, we will
denote for two probability measures P,Q on Rd and a map T : Rd→Rd

measurable, T#P = Q and say that T is a transport map from P to
Q iff for all bounded continuous function f on Rd we have∫

f(T (x))dP (x) =

∫
f(x)dQ(x) .

Monge (1781), assuming the existence of a transport map T from P
to Q wondered about how to characterize the transport map T which
minimizes a cost such as∫

‖x− T (x)‖1dP (x) .

Monge was considering the `1 norm but in fact any norm on Rd could
be used : we will hereafter consider the `2 norm ‖v‖2 = (

∑
v2
i )

1/2. Kan-
torovich in 1940 generalized this question and seeked for a probability
measure π(dx, dy) on R2d whose restriction to the x variables (respec-
tively the y variables) is given by P (resp. Q) and which minimizes∫

‖x− y‖2
2dπ(x, y) .

These two questions were in fact shown to be equivalent by Brennier
[Bre91]
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Theorem 1.6 (Brenier) Assume P,Q � dx. Then there exists a
unique π so that π|x = P and π|y = Q which minimizes∫

‖x− y‖2
2dπ(x, y) .

Moreover, π is optimal iff∫
f(x, y)dπ(x, y) =

∫
f(x, T (x))dP (x) ∀f

where T is a transport map from P to Q which can be written as T = ∇φ
for some convex function φ. T is then said to be monotone.

The question of the smoothness of the optimal transport T was also
considered. It turns out that if dP/dx and dQ/dx are smooth and posi-
tive, T is smooth. Hence, in this case, even the C∗ algebras are isomor-
phic. Of course, generalizing optimal transport theory to free probabi-
lity would allow to answer many isomorphisms questions. This program
was undertaken in [GS12] where the laws introduced in section 1.6 were
considered. For the time being the result is only perturbative but still
yields some interesting isomorphisms results, for instance between q-
Gaussian and free semicircle variables for q small enough. Namely, let
us denote

‖P‖A =
∑
|λP (q)|Adeg(q)

if P can be decomposed as P =
∑
λP (q)q where the sum runs over

monomials. Then, it was proved [GS12] that

Theorem 1.7 Fix A > 4. Then, there exists ε(A) > 0 so that if V is
a self-adjoint polynomial so that ‖V − 1

2

∑
X2
i ‖A ≤ ε(A) there exists

functions F and G in the closure of polynomial functions by ‖.‖A so
that for all polynomial P

σd(P ) = τV (P (D1F (X1, . . . , Xd), . . . ,DmF (X1, . . . , Xn)))

τV (Q) = σd (Q(D1G(X1, . . . , Xd), . . . ,DnG(X1, . . . , Xd)))
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The proof is based on the Schwinger-Dyson equation (9), and more pre-
cisely a rewriting of this equation which resembles the Monge-Ampère
equation. Let us remind the reader what is the latter. Consider again
probability measures P,Q on Rd and assume they have smooth densities

P (dx) = e−V (x)dx Q(dx) = e−W (x)dx .

Then T#P = Q is equivalent, if T is increasing, to∫
f(T (x))e−V (x)dx =

∫
f(x)e−W (x)dx

=

∫
f(T (y))e−W (T (y))JT (y)dy

with JT the Jacobian of T . Hence, this equation is equivalent to the
Monge-Ampère equation

V (x) = W (T (x))− log JT (x) .

Monge-Ampère equation is a good tool to study the transport map. In
particular, when one knows that JT is bounded below by cI (for ins-
tance in convex situations, see [Caf00]) the above is an implicit smooth
equation for T ; it can be solved by the implicit function theorem. The
strategy of [GS12] is to show that (9) is equivalent to an equation which
in fact is the analogue of Monge-Ampère equation, and then show that
in perturbative situations it has a unique solution. This strategy could
generalize to locally strictly convex potentials but there is no angle of
attack for anything more general since in general the conjugate variable
does not define the law uniquely (take V to have two deep double wells
and find out that the support of the limiting measure is disconnected
and that the mass of each connected component is not specified by the
equation). Moreover, we know that transport can not be generalized as
much as in the commutative setting in view of a result of Ozawa [Oza04]
which shows that there is no separable universal II1-factor. Understan-
ding transport in a non-commutative setting is therefore a challenging
question.
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1.10 The entropy dimension

The initial strategy of Voiculescu to attack the isomorphism pro-
blem of free group factors was in fact to try to disprove it. To this end
he proposed a candidate for an invariant of von Neumann algebra that
takes different values on free group factors according to the number
of generators. His construction is based on a notion of entropy which
generalizes the usual Boltzmann entropy as follows. One defines neigh-
borhoods of a non-commutative law τ as the set of Hermitian N × N
matrices whose non-commutative distribution approximates τ (the to-
pology is the weak topology so one considers matrices whose empirical
distribution evaluated at words of degree smaller than some k are at
distance less than ε from those of τ . These neighborhood get finer as
k goes to infinity and ε to zero). One then evaluates the probability of
such an event when the matrices are independent and follow the GUE.
As the dimension goes to infinity and then the neighborhood shrinks
to the singleton {τ}, this probability decays exponentially fast and the
rate of this decay should be given by the so-called non-commutative
entropy. This entropy hence appears as a rate function for the large
deviations of the empirical distribution of independent GUE matrices.
Sadly enough, there are still technical difficulties so that it is not even
known if the limsup and the liminf defining the rate function match.
This is why the entropy is still defined by taking the limsup ; it is then
called the micro states entropy and denoted χ(τ). The free entropy
dimension δ(X1, . . . , Xd) is given by the formula

δ(X1, . . . , Xd) = d+ lim sup
ε↓0

χ(τε)

| log ε|

where τε is the distribution of (X1 + εS1, . . . , Xd + εSd) if (S1, . . . , Sd)
are free semi-circle variables, free from (X1, . . . , Xd).

It is easy to see that δ(S1, . . . , Sd) = d but not clear at all why δ
should be an invariant of the von Neumann algebra a priori nor how
Voiculescu had such an intuition. In fact, if one performs the analo-
gous construction in the classical setting [GS07], that is take the usual
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entropy

S(p) = −
∫

log
dp(x)

dx
dp(x)

and put

δc(p) = d+ lim sup
ε↓0

S(p ∗ γε)
| log ε|

where γε is the centered Gaussian law with covariance ε2, then δc is
only invariant under Lipschitz transport (that is δc(f#p) = δc(p) only
if f is Lipschitz rather than measurable).

However, the entropy and the entropy dimension (or its slight ge-
neralization) appeared as very interesting mathematical objects which
allowed to solve other important problems such as the absence of Cartan
subalgebras in free group factors ; we refer to [Voi02b] for such appli-
cations. It is still open whether this approach can allow to construct
invariants for von Neumann algebra.

A point which may be a positive sign that entropy dimension is
a good object is its relation with L2 Betti numbers [CS05]. Given a
measure-preserving action of a free group Fn on a probability space
(X,µ), there is a classical construction (going back to von Neumann)
which associates to this data a von Neumann algebra denoted L∞(X)oα

Fn. In the case of a trivial action on a one-point space, this von Neu-
mann algebra is precisely the free group factor L(F ∗n). For non-trivial
actions and continuous spaces, one obtains other von Neumann alge-
bras M(X,α, Fn) = L∞(X) oα Fn. One can ask more generally when
M(X,α, Fn) are isomorphic ; in the case X = {point} this is the iso-
morphism question for free group factors. Remarkably, it was recently
shown by Popa and Vaes [1] that for free actions α on non-atomic
spaces (X,µ), M(X,α, Fn) ∼= M(X,α′, Fn′) entails in particular n = n′.
The key step in their proof involves showing that any isomorphism of
M(X,α, Fn) with M(X,α′, Fn) must give rise to an orbit equivalence
between the actions α and α′. It then follows from Gaboriau’s `2 coho-
mology theory (and its L2 Betti numbers) for orbit equivalence relations
that n = n′.
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2 Topological expansions

Topological expansions build upon the formula for moments of Gaus-
sian (GUE) matrices’ which are given by

E[
1

N
Tr((XN)p)] =

∑
graph 1 vertex

degree p

N−2g =
∑
g≥0

N−2gM(g, p) (13)

where M(g, p) is the number of maps with genus g build over a vertex
of degree p, that is the number of graphs build over one vertex of degree
p which can be properly embedded onto a surface of genus g (but not in
a smaller genus surface). This formula was proved in (8) based on Wick
calculus. ’t Hooft [Hoo74] and Brézin-Itzykson-Parisi-Zuber [BIPZ78]
had the idea in the seventies to use further this remarkable relation
between matrix moments and the enumeration of graphs to enumerate
maps with several vertices. Topological expansions were since then used
in many diverse context in physics or mathematics ; after the enume-
ration of triangulations following Brézin, Itzykson, Parisi and Zuber,
it was used to study the enumeration of meanders (Di Francesco ...),
the enumeration of loop configurations and the O(n) model (Eynard,
Kostov or Guionnet-Jones-Shlyakhtenko-Zinn Justin), and its applica-
tion to knot theory (Zinn-Justin, Zuber)... The full topological expan-
sions were used in mathematics since the work of Harer and Zagier
(1986) in their article on the Euler characteristics of the moduli space
of curves, and the famous work of Kontsevich. It was also seen as a
tool to construct invariants based on its relation with algebraic geome-
try and topological string theory (the famous Dijkgraaf-Vafa conjecture
states that Gromov-Witten invariants generating functions should be
matrix integrals).

It turns out that such topological expansions are closely related with
the so-called loop (or Schwinger-Dyson) equations which are satisfied
by matrix models but also can be seen as topological recursion relations.
At the first order, these equations are just given by the type of non-
commutative integration by parts formula that we described in (12).
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The next orders equations appear as derivatives of the first loop equa-
tion taken at finite dimension, and allow to describe the full topological
expansion. Hence, as put forward by B. Eynard, the loop equations can
be used as the key to construct topological expansions and therefore
interesting geometric quantities and invariants.

In this lecture we describe more precisely the relation between ma-
trix integrals, topological expansions and loop equations. Based on this
relation, we show that topological expansions can be derived in much
greater generality than those related with matrices with Gaussian en-
tries and Feynmann diagrams, namely in models for which loop equa-
tions given by a non-commutative derivative are valid. We detail the
case of β ensembles and integrals over the unitary group. This lecture is
related with the previous but hopefully can be followed independently.

2.1 Topological expansions and Wick formula

Expansion (13) can be generalized to monomials in several matrices
and then count maps with one color vertex. The first natural idea to
count maps with several vertices is to consider the expectation of a
product of traces of words as follows. Let q1, · · · , qn be monomials in d
non-commutative variables. Then, applying Gaussian calculus (that is
Wick formula), we find that if P is the law of the GUE (see section 1.5)∫ n∏

i=1

(NTr(qi(X1, · · · , Xm)))dPN(X1) · · · dPN(Xm)

=
∑
g∈N

∑
c≥1

1

N2g−2c
]{Gg,c((qi, 1), 1 ≤ i ≤ n)}

Here ]{Gg,c((qi, 1), 1 ≤ i ≤ n} is the number of graphs (up to homeo-
morphism) that can be build on stars of type qi, 1 ≤ i ≤ n with exactly
c connected components so that the sum of their genera is equal to g.

Hence, such expectations are related with the enumeration of graphs
with several vertices but unfortunately do not sort the connected graphs.
We next how this can be done.
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2.2 Matrix models and topological expansions

To enumerate connected graphs, and more precisely maps, the idea
[BIPZ78] is to consider instead of moments partition functions, that is
logarithm of Laplace transforms of traces of monomials.

Before going any further let us define more precisely maps.

2.2.1 Maps

Maps are connected graphs which are properly embedded into a
surface, that is embedded in such a way that its edges do not cross and
the faces (obtained by cutting the surface along the edges of the graph)
are homeomorphic to disks. The genus of a map is the smallest genus
of a surface so that this can be done. By Euler formula, we have

2− 2g = #{vertices}+ #{faces} −#{edges} .

Be careful that in the definition above the external face is counted. Here
is a genus zero (or planar) map with two vertices, 3 edges and 3 faces

and here is a genus one map with two vertices, 3 edges and one face :

1
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As surfaces come with an orientation, a fact is that any given cyclic
order at the ends of edges of a graph around each vertex uniquely
determines the imbedding of the graph into a surface.

Hence, to enumerate maps, we shall be given vertices equipped with
“half-edges” and a cyclic order at the ends of their edges. Edges will just
be created by matching the end points of the half-edges. As we shall
count labeled maps, we shall assume also that each vertex is given a
root, that is a marked edge. In fact, these vertices will be given by stars
as defined in section 1.5. Such vertices can be equipped with colored
half-edges and therefore will be bijectively associated with monomials
simply by assigning to each letter a color, see section 1.5.

We will denote for k = (k1, · · · , kn) and monomials q1, . . . , qn,

Mg((qi, ki), 1 ≤ i ≤ n) = #{ maps with genus g

and ki stars of type qi, 1 ≤ i ≤ n}.

the number of maps with genus g build on ki stars of type qi, 1 ≤ i ≤ n,
by matching the half-edges of the stars which have the same color. The
enumeration is done up to homeomorphisms.By convention, we will
denote M0(1) = 1.

Note that stars can also be seen by duality as polygons with co-
lored sides and one mark side, where each end point of the half-edge
is replaced by a perpendicular segment of the same color. Maps are
then “polygonizations” of a surface with given genus by polygons of
prescribed nature. For instance, for the matrix model with q(X) = X4,
the stars are vertices with valence four, which in the dual picture are
just square. We are thus counting quadrangulations of a surface with
given genus and a given number of squares. The counting is done with
labeled sides.
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2.2.2 Random matrices and the enumeration of maps

Consider q1, · · · , qn monomials. Then, [BIPZ78] shows that

log

(∫
e
∑n
i=1 tiNTr(qi(X1,··· ,Xm))dPN(X1) · · · dPVN(Xm)

)

=
∑
g≥0

1

N2g−2

∑
k1,··· ,kn∈N

n∏
i=1

(ti)
ki

ki!
Mg((qi, ki), 1 ≤ i ≤ n) (14)

where the equality means that derivatives of all orders at ti = 0, 1 ≤ i ≤
n, match. The proof of this formula is simply done by developing the ex-
ponential and recalling that the logarithmic function will yield connec-
ted graphs. Adding in the potential a term tq, taking a formal derivative
in t at the origin shows that if V = 1

2

∑
X2
i −

∑
tiqi(X1, . . . , Xm) then

for any monomial q∫
1

N
Tr(q(XN

1 , . . . , X
N
d ))dPVN(XN

1 , . . . , X
N
d )

=
∑
g≥0

1

N2g−2

∑
k1,··· ,kn∈N

n∏
i=1

(ti)
ki

ki!
Mg((q, 1); (qi, ki), 1 ≤ i ≤ n) (15)

where Mg((q, 1); (qi, ki), 1 ≤ i ≤ n) is the number of maps of genus g
build on one star of type q and ki stars of type ki, 1 ≤ i ≤ n.

At this point the equality is formal but it can in fact be made
asymptotic as soon as reasonable assumptions are made to insure that
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the integral converges and that the ti are small enough to guarantee the
convergence of the series. Equality (15) given asymptotically up to any
order of correction N−k is called an asymptotic topological expansion.
We next discuss this issue, and how the loop equations can play a key
role in deriving the topological expansions.

2.3 Loop equations and asymptotic expansions

It is possible to prove topological expansions by using functional
calculus (namely integration by parts) rather than Wick formula and
Gaussian calculus. This approach turns out to allow the proof of asymp-
totic topological expansions but also to generalize to different setting
which are not related with any Gaussian variables, such as the integra-
tion over the unitary group or under the so-called β ensemble. We first
describe the strategy for the law PNV . As we already pointed out, by a
simple integration by part, we can prove, see (10), that∫

1

N
Tr(PDiV )dPNV (XN

1 , . . . , X
N
d ) (16)

=

∫
1

N
Tr⊗ 1

N
Tr(∂iP )dPNV (XN

1 , . . . , X
N
d ) .

In the case where V is strictly convex (in the sense that Hess(TrV ) ≥ cI
for some c > 0), we can argue by standard concentration of measure
(see (11)) and Brascamp Lieb inequality (see [AGZ10] and [Gu09]) that
there exists a finite constant C(which only depends on c) so that for
any monomial q of degree less than

√
N∫

| 1
N

Tr(q(XN
1 , . . . , X

N
d ))|dPVN(XN

1 , . . . , X
N
d ) ≤ Cdeg q . (17)

As a consequence, the family {
∫

1
N

Tr(q(XN
1 , . . . , X

N
d ))dPVN(XN

1 , . . . , X
N
d ), q}

is tight. Any limit point {τ(q), q} satisfies the Schwinger-Dyson equa-
tion

τV (PDiV ) = τV ⊗ τV (∂iP ) (18)
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with τV (I) = 1. Here τV is extended linearly to polynomials. Moreover,
for any monomial q, we deduce from (17) that

|τV (q)| ≤ Cdeg(q) . (19)

As a consequence, when V − 1
2

∑
X2
i =

∑
tiqi with the ti small enough,

there exists a unique solution to (18). Indeed, when ti = 0, the moments
are just defined inductively by (18). When the ti are small enough, the
equation still has a unique solution. Indeed, taking two solutions τ, τ̃
and denoting

∆k := sup
q:deg(q)≤k

|τ(q)− τ̃(q)|

where the supremum is taken on monomials of degree smaller or equal
to k, we have by using (18), (21) and ∆0 = 0, if D + 1 = max deg(qi)

∆k+1 = max
i

sup
q:deg q≤k

|τ(Xiq)− τ̃(Xiq)|

|τ(Xiq)− τ̃(Xiq)| ≤ |τ ⊗ τ(∂iq)− τ̃ ⊗ τ̃(∂iq)|+D
∑

tj∆k+D

≤
k∑
l=1

∆lC
k−l +D

∑
tj∆k+D

Hence,

∆k+1 ≤
k∑
l=1

∆lC
k−l +D

∑
tj∆k+D,∆k ≤ 2Ck

so that for γ < 1/C,

∆γ =
∑
k≥1

γk∆k ≤
γ

1− Cγ
∆γ +

D
∑
|tj|

γD
∆γ (20)

which entails ∆γ = 0 for γ < 1/C∧ so that

γ

1− Cγ
+
D
∑
|tj|

γD
< 1 ,

which implies τ = τ̃ .

We shall see that
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Theorem 2.1 For ti small enough,

Mt(q) =
∑
k∈Nn

n∏
i=1

(−ti)ki
ki!

M0((q, 1); (qi, ki), 1 ≤ i ≤ n)

is solution of equation (18) and therefore

τV (q) =Mt(q)

Let us remark that by definition of τV , for all polynomials P,Q,

τV (PP ∗) ≥ 0 τV (PQ) = τV (QP ).

As a consequence, Mt also satisfy these equations : for all P,Q

Mt(PP
∗) ≥ 0 Mt(PQ) =Mt(QP ) Mt(1) = 1.

This means thatMt is a tracial state. The traciality property can easily
be derived by symmetry properties of the maps. However, the positivity
property Mt(PP

∗) ≥ 0 is not easy to prove combinatorial, and hence
matrix models are an easy way to derive it. This property may be seen
to be useful to actually solve the combinatorial problem (i.e. find an
explicit formula for Mt).

Proof. Let us denote in short, for k = (k1, . . . , kn) and a monomial q
by Mk(q) =M0((q, 1); (qi, ki), 1 ≤ i ≤ n) the number of planar maps
with ki stars of type qi and one of type q. We generalize this definition
to polynomials P by linearity. We let

Mt =
∑
k∈Nn

n∏
i=1

(−ti)ki
ki!

Mk(q)

This series is a priori formal but we shall see below that in fact there
exists a finite constant C so that for any monomials qi

Mk(q) ≤
∏

ki!C
∑
kideg(qi) (21)

converges for |ti| < 1/C.Mt satisfies (18) if and only if for every k and
P
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Mk(XiP ) =
∑

0≤pj≤kj
1≤j≤n

n∏
j=1

C
pj
kj
Mp⊗Mk−p(∂iP )+

∑
1≤j≤n

kjMk−1j([Diqj]P )

(22)
where 1j(i) = 1i=j and Mk(1) = 1k=0.

– We first check (22) for k = 0 = (0, · · · , 0). By convention,M0(1) =
1. We now check that

M0(XiP ) =M0 ⊗M0(∂iP ) =
∑

P=p1Xip2

M0(p1)M0(p2)

But in any planar map with only one star of type XiP , the half-
edge corresponding to Xi has to be glued with another half-edge
of P . If Xi is glued with the half-edge Xi coming from the decom-
position P = p1Xip2, the map is then split into two (independent)
planar maps with stars p1 and p2 respectively (note here that p1

and p2 inherite the structure of stars since they inherite the orien-
tation from P as well as a marked half-edge corresponding to the
first neighbour of the glued Xi.) Hence the relation is satisfied.

– We now proceed by induction over k and the degree of P ; we
assume that (22) is true for

∑
ki ≤ M and all monomials, and

for
∑
ki = M + 1 when deg(P ) ≤ L. Note that Mk(1) = 0 for

|k| ≥ 1 since we can not glue a vertex with no half-edges with
any star. Hence, this induction can be started with L = 0. Now,
consider R = XiP with P of degree less than L and the set of
planar maps with a star of type XiP and kj stars of type qj,
1 ≤ j ≤ n, with |k| =

∑
ki = M + 1. Then,

� either the half-edge corresponding to Xi is glued with an half-
edge of P , say to the half-edge corresponding to the decomposition
P = p1Xip2 ; we then can use the argument as above ; the map M
is cut into two disjoint planar maps M1 (containing the star p1)
and M2 (resp. p2), the stars of type qi being distributed either in
one or the other of these two planar maps ; there will be ri ≤ ki
stars of type qi in M1, the rest in M2. Since all stars all labelled,
there will be

∏
Cri
ki

ways to assign these stars in M1 and M2.
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Hence, the total number of planar maps with a star of type XiP
and ki stars of type qi, such that the marked half-edge of XiP is
glued with an half-edge of P is

∑
P=p1Xip2

∑
0≤ri≤ki
1≤i≤n

n∏
i=1

Cri
ki
Mr(p1)Mk−r(p2) (23)

� Or the half-edge corresponding to Xi is glued with an half-edge
of another star, say qj ; let’s say with the edge coming from the
decomposition of qj into qj = q1

jXiq
2
j . Then, once we are giving

this gluing of the two edges, we can replace the two stars XiP
and q1

jXiq
2
j glued by their Xi by the star q2

j q
1
jP .

We have kj ways to choose the star of type qj and the total number
of such maps is ∑

qj=q1jXiq
2
j

kjMk−1j(q
2
j q

1
jP )

Summing over j, we obtain by linearity of Mk

n∑
j=1

kjMk−1j([Diqj]P ) (24)

(23) and (24) give (22). Moreover, it is clear that (22) defines
uniquely Mk(P ) by induction. In addition, we see that the so-
lution to (22) satisfy (21) : Indeed this is true for k = 0 as free
semi-circle variables are bounded by 2 and then follows for large
k by induction over

∑
ki.

It turns out that this strategy can be followed for each genera up
to consider a family of loop equations which are obtained by differen-
tiating the first one with respect to small additional potentials. The
first point is to derive the second order Schwinger Dyson equation by
varying V into V + εW and differentiating at ε = 0 the first order loop
equation (16), hence getting equations for the cumulants. We refer the
interested reader to [GMS07, Ma06] for full details, but outline the ap-
proach below. The first point is to prove an a priori rough estimate by
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showing that there exists a finite constant C > 0 so that for all ti’s
small enough, all monomials q of degree less than N1/2−ε for ε > 0, we
have

|E[τXN [q]]− τV (q)| ≤ Cdeg(q)

N2
.

The proof elaborates on the ideas developed around (20) to prove uni-
queness of the solution to Schwinger-Dyson equation and the concentra-
tion inequalities (11) which give a fine control on the error term in the
loop equation satisfied by E[τXN ] with respect to the Schwinger-Dyson
equation. Once we have this a priori estimate, we write the second loop
equation by making a small change in the potential V→V + εN−1W
and identifying the linear term in ε in the first order loop equation. We
denote by

W V
2 (P,Q) = E[(TrP − ETrP )(TrQ− E[TrQ])]

= ∂εPV−εN
−1Q(TrP )|ε=0

W V
3 (P,Q,R) = ∂εW

V−εN−1R
2 (P,Q)

We denote by δ̄N(P ) = E[Tr(P )] − NτV (P ). Note that equation (16)
can be written as

E[Tr(ΞiP )] =
1

N
W2(∂iP ) +

1

N
δ̄N ⊗ δ̄N(∂iP ) , (25)

where
ΞiP = ∂iV#P − (τV ⊗ I + I ⊗ τV )∂iP .

By our a priori estimate on δ̄N the last term is at most of order N−3.
Hence, to estimate the first order correction, we would like to estimate
the asymptotics of W2 as well as “invert” Ξi. It turns out that even
though Ξi is hardly invertible, a combination of the Ξi is on polynomials
so that τV (P ) = 0, namely

ΞP =
∑
i

ΞiDiP

Indeed, the latter can be seen as a small perturbation of the infinitesimal
generator of the free Brownian motion, see [GMS07].
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To estimate W2, we obtain the second loop equation by changing
V→V − εN−1W in (16) and identifying the linear terms in ε ; we find
if

W2(ΞiP,W ) = E[
1

N
Tr(PDiW )]

+N−1W3(∂iP,W ) + (W2 ⊗ δ̄N + δ̄N ⊗W2)(∂iP,W )

It turns out that the term in W3 is bounded by concentration inequali-
ties whereas δ̄N is of order N−1 by our previous rough estimate. Hence
we see that

lim
N→∞

W2(ΞiP,W ) = τV (PDiW )

for all i and P . Applying this with P = DiQ and summing we conclude
that

lim
N→∞

W2(P,W ) = τV (
∑
i

DiΞ−1P ×DiW ) =: w2(P,W )

and therefore plugging this back into (25) we deduce the first order
correction

E[
1

N
Tr(P )] = τV (P ) +

1

N2
w2[
∑
i

∂iDiΞ−1P ] + o(N−2) .

The next orders of the asymptotic expansion can be found similarly.

It turns out that loop equations appear for many other models which
are not directly related with Gaussian random matrices. It seems that
a large family of loop equations give rise to topological expansions. We
describe below the case of the β-ensembles and the integration over the
unitary group.

2.4 Topological expansion for β-matrix models

The law of the eigenvalues of the GUE follows the distribution on
RN

dPN(λ) =
1

ZN

∏
i<j

|λi − λj|2e−N
∑
λ2i
∏

dλi
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as can be checked by doing the change of variables associating to X
its ordered eigenvalues and a parametrization of its eigenvectors. β-
ensembles are the following generalization of this distribution :

dP V
N,β(λ) =

1

ZV
N,β

∏
i<j

|λi − λj|βe−N
∑
V (λi)

∏
dλi

It is related with invariant matrix ensembles only in the cases β = 1, 2, 4
and a priori has no relations with Gaussian entries otherwise. However,
it was proved in [BG12], see [CE06] for a formal proof, that β-ensembles
have a to pological expansion. More precisely, assume that V is analytic
in a neighborhood of the real line and such that the unique probability
measure µV which minimizes∫

V (x)dµ(x)− β

2

∫ ∫
log |x− y|dµ(x)dµ(y) (26)

has a connected support, and V is off critical in the sense that V ′(x)−
β
∫

(x − y)−1dµV (x) does not vanish in an open neighborhood of the
support of µV , then for any z ∈ C\R, and K ≥ 0∫

1

N

N∑
i=1

1

z − λi
dP V

N (dλ) =
K∑
k=0

N−kW V,k(z) + o(N−K) (27)

where o(N−K) is uniform on compacts. Moreover, we have

W V,k(z) =

bk/2c∑
g=0

(
β

2

)−g (
1− 2

β

)k−2g+1

WV ;(g;k−2g+1)

and if V is a small perturbation of the quadratic potential,WV ;(g;k−2g+1)

expands as a generating function of maps of genus g when ribbons are
twisted k − 2g + 1 times.

Note that the hypothesis that the support is connected is important
since otherwise the result is not true in general. The proof of such
expansion relies as well on the loop equations∫

β

N2

∑
i 6=j

f(xi)− f(xj)

xi − xj
dP V

N,β =

∫
[

1

N

∑
f(λi)V

′(λi)]dP
V
N,β (28)
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which can be proved by integration by parts. As a consequence, one
sees that the equilibrium measure µV satisfies the limiting equation∫ ∫

f(x)− f(y)

x− y
dµV (x)dµV (y) =

∫
f(x)V ′(x)dµV (x) (29)

If V is a small perturbation of the quadratic one can develop arguments
similar to those of the previous section to check that moments under
µV are generating functions for planar maps.

In fact, the limiting equation (29) does not always have a unique
solution as it is a weak characterization of the minimizers of (26), but it
does as soon as V is strictly convex for instance. In any case, µV governs
the first order of the expansion. To get the higher order terms in the
expansion the idea is, as in the previous section, to write equations for
all the cumulants

W V
n (x1, . . . , xn) = ∂ε1 · · · ∂εn

(
lnZ

V− 2
βN

∑
i

εi
xi−•

N,β

)∣∣∣
εi=0

by differentiating the loop equation (28) with respect to the potential.

2.5 Loop equations for the unitary group

In this section we shall consider the Haar measure dU on the unitary
group, that is the unique measure on U(N) which is invariant under
left multiplication by unitary matrices. We consider matrix integrals
given by

IN(V,Ai) =

∫
eNTr(V (Ai,Ui,U

∗
i ,1≤i≤m))dU1 · · · dUm

A well-known example is the Harich-Chandra-Itzykson-Zuber integral

HCIZ(A1, A2) =

∫
eNTr(A1UA2U∗)dU

where (Ai, 1 ≤ i ≤ m) are N × N deterministic uniformly bounded
matrices, dU denotes the Haar measure on the unitary group U(N)
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(normalized so that
∫
U(N)

dU = 1) and V is a polynomial function

in the non-commutative variables (Ui, U
∗
i , Ai, 1 ≤ i ≤ m). We assume

that the joint distribution of the (Ai, 1
2i2m) converges ; namely for all

polynomial function P in m non-commutative indeterminates

lim
N→∞

1

N
Tr(P (Ai, 1 ≤ i ≤ m)) = τ(P )

for some linear functional τ on the set of polynomials. For technical
reasons, we assume that the polynomial V satisfies Tr(V (Ui, U

∗
i , Ai, 1 ≤

i ≤ m)) ∈ R for all Ui ∈ U(N) and all Hermitian matrices Ai, 1 ≤
i ≤ m and N ∈ N. Under those very general assumptions, the formal
convergence of the integrals could already be deduced from [C03]. The
following Theorem is a precise description of the results from [CGMS09]
which gives an asymptotic convergence :

Theorem 2.2 Under the above hypotheses and if we further assume
that the spectral radius of the matrices (Ai, 1 ≤ i ≤ m,N × N) is
uniformly bounded (by say M), there exists ε = ε(M,V ) > 0 so that for
z ∈ [−ε, ε],the limit

FV,τ (z) = lim
N→∞

1

N2
log IN(zV,Ai)

exists. Moreover, FV,τ (z) is an analytic function of z ∈ {z ∈ C : |z| ≤
ε}. Furthermore, if we let

PN(dU, . . . , dU) =
1

IN(V,Ai)
eNTr(V (Ui,U

∗
i ,Ai,1≤i≤m))dU1 · · · dUm

for all polynomial P in (Ui, U
∗
i , Ai)1≤i≤m we have the convergence

τV,τ (P ) = lim
N→∞

∫
1

N
Tr(P ((Ui, U

∗
i , Ai)1≤i≤m))dPN

Note that 1
N2 log IN(zV,Ai) is a uniformly bounded analytic function,

hence its limit points are analytic and therefore uniquely determined
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by their values on a set with an accumulation point. Hence, the conver-
gence above yields the convergence on the whole complex plane. Ob-
taining the next order of the expansion is actually a work in progress
which should follow the same ideas that for integration over Gaussian
matrices.

The strategy is again to find and study the Schwinger-Dyson (or
loop) equations under the associated Gibbs measure PN . This equa-
tion is based on the invariance of the Haar measure, which somehow
generalize the Gaussian case where the loop equation was based on in-
tegration by parts, which can be seen as a consequence of the invariance
by translation of Lebesgue measure.

To define this equation let us first define derivatives on polynomials
in these matrices by the linear form such that for all i, j ∈ {1, . . . ,m}

∂jAi = 0 ∂jUi = 1i=jUj ⊗ 1 ∂jU
∗
i = −1i=j1⊗ U∗j

and satisfying the Leibnitz rule, namely, for monomials P, Q,

∂j(PQ) = ∂jP × (1⊗Q) + (P ⊗ 1)× ∂jQ. (30)

Here× denotes the product P1⊗Q1×P2⊗Q2 = P1P2⊗Q1Q2. We also let
Di be the corresponding cyclic derivatives such that if m(A⊗B) = BA,
then Dj = m ◦ ∂j. If q is a monomial, we more specifically have

∂jq =
∑

q=q1Ujq2

q1Ui ⊗ q2 −
∑

q=q1U∗j q2

q1 ⊗ U∗j q2 (31)

Djq =
∑

q=q1Ujq2

q2q1Uj −
∑

q=q1U∗j q2

U∗j q2q1 (32)

Using the invariance by multiplication of the Haar measure one can
prove the asymptotic Schwinger-Dyson equation :

PN

(
1

N
Tr⊗ 1

N
Tr(∂jP )

)
+ PN

(
1

N
Tr(PDjV )

)
= 0

This is proved by noticing that if we set Uj(t) = Uje
itB and leave

the other Uk(t) = Uk unchanged for a Hermitian matrix B then for all
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k, l ∈ {1, . . . , N}

∂t

∫
P (Up(t), 1 ≤ p ≤ m,Ai)(k, l)e

NTr(V (Up(t),Up(t)∗,Ai)dU1 · · · dUm = 0

Taking B = 1kl + 1lk and B = i1kl− i1lk shows that we can by linearity
choose B = 1kl even though this is not self-adjoint which yields the
result after summation over k and l. By using concentration of measure,
we know that for all polynomial P N−1Tr(P (Ui, U

∗
i , Ai)) is not far from

its expectation and therefore we deduce that the limit points of these
(bounded) quantities τ(P ) satisfy the Schwinger-Dyson equation

τ ⊗ τ(∂jP ) + τ(DjV P ) = 0

Uniqueness of the solution to such an equation in the perturbative re-
gime is done as in the Gaussian case ; when V = 0 it is clear as it defines
all moments recursively from the knowledge of τ restricted to the Ai
and a perturbation argument shows this is still true for small parame-
ters. The uniqueness provides the convergence whereas the study of this
solution shows that it expands as a generating series in the enumeration
of some planar maps.

3 Loop models

In this last lecture we show how matrix integrals can also be used
to enumerate loop models, which are in some cases equivalent to the
famous Potts model (on random planar maps). We first discuss the
relation with the Potts model and then show how to construct a matrix
model to solve the related enumeration question.
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3.1 The Potts model on random maps

The partition function of the Potts model on a graph G = (V,E) is
given by

ZG =
∑

σ:V→{1,...,Q}

exp(K
∑
{i,j}∈E

δσi,σj)

=
∑

σ:V→{1,...,Q}

∏
{i,j}∈E

(1 + vδσi,σj)

=
∑
E′⊂E

v] bonds Q] clusters

where v = eK−1, bonds are the edges in E ′, a subset of E, the clusters

are the connected components of the subgraph (V,E ′). For instance the
following graph where the edges in E ′ are bold whereas those in E\E ′
are dashed,

has weight v4Q3.

We shall consider the Potts model on random planar maps. Recall
(see section 2.2.1) that a map is a connected graph which is embedded
into a surface in such a way that edges do not cross and faces (obtained
by cutting the surface along the edges) are homeomorphic to a disk.

The genus of the map is the minimal genus of a surface in which
it can be properly embedded.

By Euler formula :

2− 2g = ] vertices + ] faces − ] edges.

We shall consider the Potts model on random planar maps. We as-
sume these graphs are rooted, that is are given a distinguished oriented
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edge. It is given by the partition function

Z =
∑

G=(V,E)

x#Ey#VZG

=
∑

G=(V,E)

x#Ey#V
∑

σ:V→{1,...,Q}

exp(K
∑
{i,j}∈E

δσi,σj) (33)

=
∑

G=(V,E)

x#Ey#V
∑
E′⊂E

v] bonds Q] clusters

If G is a planar map, there is a dual (green) and a medial (blue)
planar graph Gm. The vertices of the dual graph are given by a point
in each of the faces of the original graph and each of the edges of the
dual graph intersect one (and only one) edge of the original graph. The
vertices of the medial graph are the intersection of the edges of the
dual graph and the original graph. The medial graph has an edge in
each face of the graph obtained by taking both edges and vertices of
the original and dual graph. The edges of the medial graph do not cut
the edges of the original or the medial graph. Hence,the medial graph
is four-valent.

By construction, the original graph and the dual graph are in bijec-
tion. Note that in each face of the medial graph there is either a vertex
from the dual or the original graph and that this choice is given by a
checkerboard coloring of the medial graph corresponding to fix which
type of vertex is inside a face. Hence, knowing the medial graph and
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the nature of the vertex in one of its face allows to reconstruct both
the original and the dual graph.

We next describe the bijection between the configurations on the
original, dual and medial graph. A configuration on the original graph
just consists in coloring some edges and dashing the others. The dual
configuration on the medial graph is given by splitting the vertex so
that it does not intersect a colored edge. Hence, there are two sorts of
vertices according to the nature of the colored edge it does not intersect.
The two sorts of vertices on the medial graph are as follows :

Configuration are therefore described bijectively by the collection
of loops of the medial graph as well as as a checkerboard coloring.

If G is a planar map, there is a bijection between the configuration
on G and the set of loops and shaded vertices on the medial graph.

Moreover, writing Euler formula in each cluster gives the relation

]loops = 2]clusters + ]bonds− ]V

The equivalence to the loop model allows to state that if we take
y = Q−

1
2 in (33)

Z =
∑

G=(V,E)

x#EQ−
1
2

#V
∑
E′⊂E

v] bonds Q] clusters

=
∑

Γ

δ# loopsα
#

β
#
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where the summation is restricted to 4-valent rooted planar maps, and

δ =
√
Q

α

β
=

v√
Q

β = x

δ is called the fugacity.

Hence, when y = Q−1/2, the partition function Z of the Potts model
on planar maps is a generating function for the number of possible
matchings of the end points of n copies of the vertex

and m copies of the vertex

so that the resulting graph is planar, connected, has p loops, and is
checkerboard shaded.

We shall consider generalizations of such enumeration questions in the
following.

3.2 Loop models and Random matrices

We have already seen in the previous lecture that random matrices
could be used to enumerate planar graphs. In this section we show how
this point can be specified to enumerate loop models.
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In the following we shall consider loop models with vertices given
by Temperley-Lieb elements.

The Temperley-Lieb elements are boxes with boundary points connec-
ted by non-intersecting strings, equipped with a shading and a marked
boundary point.

*

The easier loop models are those with only one vertex and the ques-
tion one may ask is, being given a Temperley-Lieb element, to count
the number of planar matching of the end points of the Temperley-Lieb
element so that there are exactly n loops. The picture below shows the
case of 2 loops :

*

This question was related with random matrices for a long time in
the physics literature, see e.g. [EB99, EK95, KS92]. For a Temperley-

Lieb element B, we denote p
B∼ ` if a string joins the pth boundary

point with the `th boundary point in B, then we associate to B with
k strings the polynomial

qB(X) =
∑

ij=ip if j
B∼p

1≤ij≤n

Xi1 · · ·Xi2k .

For instance, if B is given by we have
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qB(X) =
n∑

i,j,k=1

XiXjXjXiXkXk .

Theorem 3.1 If νM denotes the law of n independent GUE matrices,

lim
M→∞

∫
1

M
Tr (qB(X)) νM(dX) =

∑
n]loops

where we sum over all planar maps that can be built on B.

Proof By Voiculescu’s theorem, if B = ,

lim
M→∞

∫
1

M
Tr (qB(X)) νM(dX)

=
n∑

i,j,k=1

lim
M→∞

∫
1

M
Tr (XiXjXjXiXkXk) ν

M(dX)

=
∑ n∑

i,j,k=1

ki j j k

=
∑

n]loops

because the indices have to be constant along loops.

The problem with the previous theorem is that moments of random
matrices can only be used so far as generating function for the enu-
meration of loop configurations taken at integer values of the fugacity.
This is enough to characterize polynomials but not the series we shall
consider later.

In [J98], V. Jones proposed a construction of a planar algebra as-
sociated with a bipartite graph. It was used in [GJS10] to overcome
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this point. The idea is to take random matrices which are indexed
by the edges of a bipartite graph instead of the integer number and
to modify the polynomial qB in such a way that the fugacity is the
Perron-Frobenius eigenvalue of the adjacency matrix of the graph.

To be more precise, let Γ = (V = V+ ∪ V−, E) be a bipartite graph
with oriented edges so that if e ∈ E, its opposite eo is also in E. Assume
that the adjacency matrix of Γ has Perron-Frobenius eigenvalue. Note
that this restrict the possible values of δ to {2 cos(π

n
), n ≥ 3} ∪ [2,+∞[

which is however a set which contains limit points.

Now, let us define for a Temperley-Lieb element B the polynomial

qvB(X) =
∑

ej=eop if jB∼p

σB(w)Xe1 · · ·Xe2k

where we recall that p
B∼ j if a string joins the pth boundary point

with the jth boundary point in the TL element B. The sum runs over
loops w = e1 · · · e2k in Γ which starts at v ∈ V . v ∈ V+ iff ∗ is in
a white region. σB is defined as follows. Denote (µv)v∈V with µv ≥ 0
the eigenvector of Γ for the Perron-Frobenius eigenvalue δ and set, if

σ(e) :=
√

µt(e)
µs(e)

, e = (s(e), t(e)),

σB(e1 · · · e2p) =
∏
i
B∼j
i<j

σ(ei)

to be the sum over products of σ(e) so that each string of B brings σ(e)
with e the edge which labels the start of the string.

For e ∈ E, e = (s(e), t(e)), let XM
e be independent (except Xeo =

X∗e ) [Mµs(e)] × [Mµt(e)] matrices with i.i.d centered Gaussian entries
with variance 1/(M

√
µs(e)µt(e)).

Theorem 3.2 (G-Jones-Shlyakhtenko [GJS10]) Let Γ be a bipar-
tite graph whose adjacency matrix has δ as Perron-Frobenius eigenva-
lue. Let B be Temperley-Lieb element so that ∗ is in an unshaded region.
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Then, for all v ∈ V +

τδ(B) := lim
M→∞

E[
1

Mµv
Tr(qvB(XM))] =

∑
δ]loops

where the sum runs above all planar maps built on B.

Maybe the best proof is by trying examples.

If B = , for all v ∈ V +

E[
1

Mµv
Tr(

∑
e:s(e)=v

σ(e)XeXe0))] =
1

Mµv

∑
e:s(e)=v

√
µt(e)
µv

MµvMµt(e)
M
√
µt(e)µs(e)

=
1

µv

∑
e:s(e)=v

µt(e) = δ

If B =
*

, for all v ∈ V +

lim
M→∞

E[
1

Mµv
Tr(

∑
e:s(e)=v
s(f)=v

σ(e)σ(f)XeXe0XfXf0)]

= δ2 +
1

µv

∑
e=f

µt(e)
µv

µ2
vµt(e)
µt(e)µv

= δ2 + δ

More generally, the edges are constant along the loops and brings
the contribution µt(e)/µv hence leading after summation to δ.

As in the previous section we can make these enumeration questions
more interesting by adding a potential, and in turn enumerating loop
models with several Temperley-Lieb vertices. Let Bi be Temperley Lieb
elements with ∗ with color σi ∈ {+,−}, 1 ≤ i ≤ p. Let Γ be a bipartite
graph whose adjacency matrix has eigenvalue δ as before. Let νM be
the law of the previous independent rectangular Gaussian matrices and
set

dνM(Bi)i(Xe) =
1‖Xe‖∞≤L
ZM
B

e
MTr(

∑p
i=1 βi

∑
v∈Vσi

µvqvBi
(X))

dνM(Xe).
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Theorem 3.3 (G-Jones-Shlyakhtenko-Zinn Justin [GJSZ12]) For
any L > 2, for βi small enough real numbers, for any Temperley-Lieb
element B with color σ, any v ∈ Vσ,

τδ,β(B) := lim
M→∞

∫
1

Mµv
Tr(qvB(X))dνM(Bi)i(X) =

∑
ni≥0

∑
δ]loops

p∏
i=1

βnii
ni!

where we sum over the planar maps build on ni TL elements Bi and
one B.

The proof is based, as in the previous section, on Schwinger-Dyson’s
equation and concentration of measure.

3.3 Loop models and subfactors

Another point of view on the previous section is subfactor theory. In
fact, Temperley-Lieb algebra can be viewed as a special case of planar
algebras and τδ,β are tracial states on this planar algebra if they are
equipped with the multiplication

and the involution which is given by taking the symmetric picture of
the element.

Theorem 3.4 (G-Jones-Shlyakhtenko [GJS10]) .

Take δ ∈ {2 cos(π/n), n ≥ 3} ∪ [2,+∞[. Then
– τδ,0 is a tracial state on the Temperley Lieb algebra.
– The von Neumann algebra associated by the GNS construction

(5) is a factor, namely its center is trivial. A tower of sub factors
with index δ2 can be built.

The tower is build by changing the multiplication so that the nea-
rest boundary points of both Temperley-Lieb elements are capped. The
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construction presented here can be generalized to any planar algebra.
Hence, it shows that there is a canonical way to construct a tower of sub
factors from any subfactor planar algebra. It is still unknown whether
the von Neumann algebras associated to τδ,β are factors for β 6= 0.

3.4 Matrix model for the Potts model

Let δ ∈ {2 cos(π
n
)}n≥3 ∪ [2,∞[ and Γ = (V+ ∪ V−, E) be a bipartite

graph with eigenvalue δ and Perron-Frobenius eigenvector µ. Assume
that Γ is finite, as otherwise the construction requires to define the joint
law of an infinite number of random matrices, which need an additional
Gibbs measure type approach. This includes δ = 2 cos(π/n), n ≥ 3, and
therefore a set with an accumulation point. We set

νMβ±(dXe) =
1‖Xe‖∞≤L
ZM
β±

e
MTr

(∑
v∈V µv

∑
σ=± βσ1v∈Vσ(

∑
e:s(e)=v σ(e)XeX∗e )

2
)

∏
e

e−
M
2

(µs(e)µt(e))
1
2 Tr(XeX∗e )dXedX

∗
e

Theorem 3.5 (G-Jones-Shlyakhtenko-Zinn Justin [GJSZ12] )
Then, for L large enough, β± small enough, for all TL B, v ∈ VσB ,

lim
M→∞

1

Mµv

∫
Tr(qvB(X))νMβ±(dX)

=
∑

n+,n−≥0

∑∏
i=±

βnii
ni!

δ]loops =: Trβ±,δ(B)

where we sum over all planar maps build by matching the end points of
n− (resp. n+) vertices of type

resp.
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and one of type B. If B is given by

we count the number of matchings of the following type :

3.5 Solving the Potts matrix model

By construction

∑
Γ

δ# loopsβ
#

− β
#

+

equals

lim
M→∞

1

M2
∑
µ(v)2

logZM
β±

with for L large enough ZM
β±

equals to∫
‖Xe‖≤L

e
MTr

(∑
v∈V µv(β+1v∈V++β−1v∈V− )(

∑
e:s(e)=v

√
µvµt(e)XeX

∗
e )

2
)
νM(dX)

if νM is the law of Xe, [Mµs(e)] × [Mµt(e)] matrices with iid centered

Gaussian entries with covariance (M2µs(e)µt(e))
− 1

2

We can compute the matrix model and therefore solve the original
combinatorial problem by using Hubbard-Stratonovich transformation.
Namely, let Gv [Mµv] × [Mµv] independent matrices from the GUE

and Xe be [Mµs(e)]×[Mµt(e)] matrices with covariance (M2µs(e)µt(e))
− 1

2

under νM , with α± =
√

2β±, ∆(λ) =
∏

i 6=j(λi − λj),



54

ZM
β± =

∫
‖Xe‖≤L

e
MTr

(∑
v∈V µv(β+1v∈V++β−1v∈V− )(

∑
e:s(e)=v σ(e)XeX∗e )

2
)
νM(dX)

=

∫
‖Xe‖≤L

eMTr(
∑
σ=±

∑
v∈Vσ ασGv(

∑
e:s(e)=v

√
µvµt(e)XeX

∗
e ))νM(dX, dG)

≈
∫
‖Gv‖≤L′

∏
e∈E+

e−Tr⊗Tr(log(I+α+I⊗Gs(e)+α−Gt(e)⊗I))νM(dG)

=

∫
|λei |≤L′

∏
e∈E+

e−
∑[Mµs(e)]

i=1

∑[Mµt(e)]

j=1 log(1+α+λei+α−η
e
j )

∆(ηe)∆(λe)e−
[Mµs(e)]

2

∑[Mµs(e)]

i=1 (λei )
2−

[Mµt(e)]

2

∑[Mµt(e)]

j=1 (ηej )2dλedηe.

where in the second line we used Hubbard-Stratonovich transformation
and in the third took the expectation over the Xe (note here that the
bound on the ‖Xe‖ insured that the log-density of the joint law in X,G
was strictly concave ; it thus keep the Gv bounded with overwhelming
probability by Brascamp-Lieb inequality which is the reason why the
bound on ‖Xe‖ transferred into a bound on ‖G‖v).

Hence, Hubbard-Stratonovich led us to define an auxiliary measure
PM,L
α , absolutely continuous with respect to Lebesgue measure and with

density

1|λv |≤L

ZM,L
α

∏
e∈E+

∏
1≤i≤[Mµs(e)]

1≤j≤[Mµt(e)]

1

1 + α+λ
s(e)
i + α−λ

t(e)
j

∏
v∈V

∆(λv)e−
Mµv

2

∑
(λvi )2 .

By large deviation analysis, see [BaG97, AGZ10], the asymptotics of
this model can easily be studied and one finds that

PM,L
α

(
d(

1

Mµv

∑
δλvi , νv) < ε∀ v

)
≈ e−M

2[I(νv ,v∈V )−inf I]

with if Σ(ν) =
∫

log |x− y|dν(x)dν(y)

I(νv, v ∈ V ) =
∑
v

µ2
v

2
(

∫
x2dνv(x)− 2Σ(νv))
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−
∑
e∈E+

µvµt(e)

∫
log |1 + α+x+ α−y|dνv(x)dνt(e)(y) .

Moreover limM→∞M
−2 logZM,L

α = − inf I

Theorem 3.6 ([GJSZ12]) • I achieves its minimal value at a unique
set of probability measures νv, v ∈ V .

• ∃ ν+, ν− ∈ P (R), so that νv = ν± if v ∈ V±. (ν−, ν+) are the unique
minimizers of

Iδ,α+,α−(ν+, ν−) =
∑
ε=±

(
1

2

∫
x2dνε(x)−

∫
log |x− y|dνε(x)dνε(y)

)

+δ

∫
log |1 + α+x+ α−y|dν+(x)dν−(y).

• For all L > 2 not too large,

lim
M→∞

E[
1

Mµv

[Mµv ]∑
i=1

(λvi )
p] =

∫
xpdνv(x) ∀ p ∈ N, v ∈ V.

We next relate the asymptotic measures ν+, ν− with the original
combinatorial problem we wished to solve, that is the enumeration for
the loop model. Let M(z) =

∫ ∑
n≥0 z

nxndν+(x) On the other hnd,
consider the generating function we are interested in, namely put

γ(z) = α+z/(1− z2M(z))

and

C(z, α+, α−) =
∑
n≥0

zn
∑

δ`
α
n+

+

n+!

α
n−
−

n−!

where we sum over the planar maps build over n+ (resp. n−) vertices
with two strings and two black (resp. white) regions and one vertex
with n strings with black inside so that there are exactly ` loops. Then,
for small z, we have
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C(z, α+, α−) =
α+

z
[1− α+γ

−1(z)

z
].

Hence, we see that the original combinatorial question encapsulated in
C(z, α+, α−) can be reduced to a variational problem, namely minimi-
zing Iδ,α+,α− . It turns out that this minimizing problem can be solved
explicitly as follows. Let p+ (resp. p−) be the law of 1 +α+x and −α−y
under ν+ (resp. ν−).

• For α± small enough, p± has a connected support [a±, b±] around
1 (resp. 0) and a− < b− < a+ < b+.

• Set G±(z) =
∫

(z − x)−1dp±(x). Then

G±(z + i0) +G±(z − i0) = P±(z) + δG∓(z) z ∈ [a±, b±]

with P−(z) = z/α−, P+(z) = (1− z)/α+.

Introduce

u(z) =

∫ z

b−

1√
(v − a+)(v − a−)(v − b+)(v − b−)

dv,

with inverse z(u). With δ = q + q−1 set

ω±(u) = q±1G+(z(u))−G−(z(u))± 1

q − q−1
(P+ + q±1P−)z(u).

Then, we have

ω±(u+ 2K) = ω±(u) ω±(u+ 2iK ′) = q±2ω±(u)

ω± are meromorphic with only poles at ±u∞. If we set

Θ(u) = 2
∞∑
k=0

e
iπ
ω2
ω1

(k+1/2)2
sin(2k + 1)

πu

ω1

Then we have

ω+(u) = c+
Θ(u− u∞ − νω1)

Θ(u− u∞)
+ c−

Θ(u+ u∞ − νω1)

Θ(u+ u∞)

All the parameters can be computed as solutions of fixed point equa-
tions.
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[Śni01] P. Śniady, Gaussian random matrix models for q-deformed
Gaussian variables, Comm. Math. Phys. 216 (2001), no. 3,
515–537. MR 2003a :81096
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