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Discrete subgroups
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The integer lattice 

The integers Z ⇢ R

Z2 ⇢ R2

(x, y) + (z, w) =

(x+ z, y + w)

acts on  R2

good 
quotient spaces

discreteness
=



Symmetries of tilings

Poincaré model of the hyperbolic plane

Hyperbolic isometries are Möbius 
transformations that preserve the disk

D = {z 2 C | |z| < 1}

SU(1, 1) ⇢ SL(2,C)
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acting by linear fractional transformations

The subgroup � preserving the tiling 
is a discrete subgroup of SU(1, 1)

SU(1, 1) =
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Arithmetic construction

It acts by fractional linear transformations on the upper half plane 

H = {z 2 C | Im(z) > 0}

An example is  SL(2,Z) ⇢ SL(2,R), the modular group. 

For other matrix groups we can consider the following examples: 

The quotient is not compact, 
but of finite hyperbolic volume. 

SL(n,Z) ⇢ SL(n,R)
SL(n,Z[i]) ⇢ SL(n,C)

Sp(2n,Z) ⇢ Sp(n,R)
Sp(2n,Z[i]) ⇢ Sp(n,C)

SO(q,Z) ⇢ SO(q)

Tilings and integer points give rise to lattices: discrete subgroups of finite covolume.    

Taking integer points of matrix groups gives rise to discrete subgroups.  



The tale about lattices

Lattices are “fat” and “tame”. 

Classification Moduli spaces Rigidity

They are of finite covolume. They are finitely generated. 
They are fundamental groups of interiors of manifolds with boundary. 



Classification

Hilbert: Classify all symmetry groups of periodic tilings of the Euclidean space 

R.A. Nonnenmacher FibonacciCasey Mann

Bieberbach 1: 

Bieberbach 2: 

Any crystallographic group of dimension n contains a subgroup 
of finite index which is isomorphic to     .  Zn

There exists a finite number of isomorphism classes of crystallographic 
groups of dimension n.  

The symmetry group of a periodic tiling of the Euclidean space of dimension n is called a 
crystallographic group of dimension n. A crystallographic group is a cocompact lattice
in the group of isometries of the Euclidean space.  

This gives a complete classification of cocompact lattices in                 . Isom(Rn
)



Moduli space of surfaces 
Let S be a surface of genus g > 1. Endow S with a hyperbolic metric. 

The fundamental group 

acts as a hyperbolic crystallographic group.  
⇡1(Sg) = {A1, B1, · · · , Ag, Bg |A1B1A
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Teichmüller:

Any torsionfree hyperbolic crystallographic group of dimension 2 
is isomorphic to            for some g > 1. ⇡1(Sg)

For          , the groups            and            are not isomorphic.g 6= h ⇡1(Sg) ⇡1(Sh)

For any g, the space of isomorphisms of            with a discrete subgroup 
in                                 (up to conjugation) is           .

⇡1(Sg)
R6g�6SU(1, 1) ⇠= SL(2,R)

Poincaré:

Fundamental groups of surfaces are flexible. There is a rich moduli space of 
different hyperbolic structures on a given topological surface! 

Fricke



Geometrizing hyperbolic manifolds
Consider now a compact hyperbolic manifold of dimension n > 2. 

Mostow rigidity:

The group of isometries of the hyperbolic space of dimension n is              , SO(1, n)

Rn+1 linear transformation of          preserving the quadratic form                                     .q1,n(x) = �x
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⇡1(M)Let             be the fundamental group of a hyperbolic manifold of dim n>2.
⇡1(M)Then there exists a unique isomorphism of             with a cocompact lattice in              .  SO(1, n)

Cocompact lattices in              , n>2, are rigid in              .SO(1, n)

 The topology determines the geometry!
SO(1, n)

But, cocompact lattices in              , can be deformed in                for m>n.SO(1, n) SO(1,m)



Superrigidity in higher rank
SO(1, n)The hyperbolic space is the symmetric space associated to               .

The Lie groups                      or                 are of higher rank if n>1. SL(n+ 1,R) Sp(2n,R)
Their symmetric spaces are non-positively curved, but not negatively curved.
They have totally geodesic and isometrically embedded Euclidean planes. 

Example: is the space of scalar products on         . Xn+1 = SL(n+ 1,R)/SO(n+ 1) Rn+1

The subspace of scalar products for which the standard basis vectors of Rn+1

stay orthogonal is a subspace of          which is isometric to      . RnXn+1

Let    be a lattice in a simple Lie group G of higher rank.  �Margulis superrigidity: 
Then any unbounded homomorphism ⇢ : � ! G0 extends to a 
homomorphism of Lie groups                     .⇢G : G ! G0

Margulis arithmeticity: Every lattice in a simple Lie group G of higher rank is arithmetic.

Lattices in higher rank are superrigid. They are all arithmetic. 

It has negative curvature, which is a feature of the Lie group               being of rank one. SO(1, n)



Beyond Lattices

What do we find if we look beyond
the world of lattices? 

If we consider discrete subgroups
which are not lattices…..

….. we find ourselves in the company of 
strange creatures, which we do not know 
how to tame. 

But there are some beautiful examples …. and the beginnings of a new structure theory.  



Quasifuchsian deformations

H2

CP1 ⇠= @H3

H3

Consider 
Then ⇢0(⇡1(Sg)) preserves a totally geodesic copy of H2

Focus on the sphere at infinity, the equator is preserved. 

⇢0(⇡1(Sg))
acts properly discontinuously 
on the upper and lower hemisphere

The discrete subgroup                                     is not a lattice.   ⇢0(⇡1(Sg)) ⇢ SL(2,C)

We can deform it and consider a family of homomorphisms 
⇢t : ⇡1(Sg) ! SL(2,C)

There is a fractal Jordan curve
in the sphere at infinity, which is 
preserved by                  .⇢t(⇡1(Sg))

The convex hull of that curve is a closed convex 
subset              on which                  acts properly
discontinously and cocompactly.   

C ⇢ H3 ⇢t(⇡1(Sg))

⇢0 : ⇡1(Sg) ! SL(2,R) ⇢ SL(2,C) = Isom(H3
)



Convex cocompact subgroups

Let G be a simple Lie group and X its symmetric space.  
�A discrete subgroup    of G is convex cocompact if there exists a closed convex set

C ⇢ X which is preserved by   , and such that         is compact. � �\C

If G is of rank one, then 
�•  the space of convex cocompact realizations of    is open in                  .

•  any convex cocompact subgroup is undistorted.
•  any torsion free convex cocompact subgroup is the fundamental group of the 
    interior of a compact manifold with boundary (tameness). 

Hom(�, G)

In rank one Lie groups convex cocompact subgroups provide a rich class of 
good discrete subgroups. 

If G is of higher rank and    a convex cocompact subgroup which does not preserve 
a properly embedded symmetric space, then    is a cocompact lattice.    

�
�

The paradigm in higher rank is rigidity! 
There are no interesting convex cocompact subgroups in higher rank Lie groups

Kleiner-Leeb, Quint:



Paradigm shift: Flexibility and Rigidity

We are sailing around the iceberg, seeing more and more aspects 
- some familiar and some new.  

We discovered the tip of an iceberg! 

Anosov representation of hyperbolic groups
generalization of convex cocompact subgroups
to the setting of higher rank Lie groups. 

Higher Teichmüller spaces
special classes of discrete embeddings of fundamental 
groups of surface into special Lie groups of higher rank. 

[Labourie, Guichard-W, Kapovich-Leeb-Porti, Gueritaud-Guichard-Kassel-W, 
Bridgeman-Canary-Labourie-Sambarino, Bochi-Potrie-Sambarino,…]

Combining flexible groups with higher rank rigidity we get
rich classes of discrete subgroups in Lie groups of 
higher rank with interesting structure theory :



Higher Teichmüller spaces
Fricke-Teichmüller space is identified with a subset, in fact a connected component,

Hyp(S) ⇢ Hom(⇡1(S),PSL(2,R))/PSL(2,R)

Replace PSL(2,R) by a non-compact simple Lie group G 

consisting of discrete embeddings. 

Higher Teichmüller spaces are subsets T (S,G) ⇢ Hom(⇡1(S), G)/G

which are unions of connected components consisting of discrete embeddings

Hitchin components
G is a split real Lie group

SL(n,R) Sp(2n,R)SO(n, n+ 1) SO(n, n)

Maximal representations
G is a Hermitian Lie group 

Sp(2n,R) SU(n, n) SO(2, n) SO⇤(2n)

When                         the Hitchin component and the space of maximal representations
agree with the Fricke-Teichmüller space. 

G = PSL(2,R)

For other groups they resemble classical Teichmüller space in many ways.

[Goldman, Labourie, Fock-Goncharov, Burger-Iozzi-W, Bonahon-Dreyer, Bridgeman-Canary-Labourie-Sambarino, Li, 
Gaiotto-Moore-Neitzke, Zhang, Lee-Zhang, Guichard-W, Le, Burger-Pozzetti, Fanoni-Pozzetti …]



Convex real projective structures

The Hitchin component parametrizes convex real projective structures on S.

is the connected component containing the homomorphism:
The Hitchin component THit(S,PSL(3,R)) ⇢ Hom(⇡1(S),PSL(3,R))/PSL(3,R)

⇢0 : ⇡1(S) ! PSL(2,R) ⇠= SO(1, 2) ⇢ PSL(3,R)

This homorphism preserves the Klein-model of the hyperbolic plane. 
x

y

A

B

• Fenchel-Nielsen type coordinates but pair of pants have interior parameters
[Goldman, Fock-Goncharov, Bonahon-Dreyer, Zhang]

THit(S,PSL(3,R))• Riemannian metric on [Li, Bridgeman-Canary-Labourie-Sambarino]

• Infinitely many integer points in THit(S,PSL(3,R)) [Long-Reid-Thislethwaithe]

[Goldman, Choi-Goldman]



 What is beneath the surface?

Higher Teichmüller spaces parametrize geometric structures on compact manifolds M. 
Are these manifolds M always compact bundles over S?  [Guichard-W, Baraglia, Alessandrini-Li]

Parametrizations of Hitchin components, and partially of maximal representations. 
Are there natural (Hamiltonian) flows associated to these parameters?  

[Fock-Goncharov, Strubel, Bonahon-Dreyer, Zhang, W-Zhang]

Can we count them or determine their asymptotics?  
Infinitely many (non-equivalent) integer points in higher Teichmüller spaces. 

[Long-Reid-Thislethwaite, Burger-Labourie-W]

Riemannian metric on higher Teichmüller spaces, invariant under mapping class group.    
How do the quotients look like? Are there other metrics?   

[Bridgeman-Canary-Labourie-Sambarino, Li]

What do we see? 

Is there a similar theory for fundamental groups of hyperbolic manifolds M?  
[Benoist, Barbot-Merigot, Cooper-Tillmann, Ballas-Danciger-Lee]

Structure theory of non-hyperbolic discrete subgroups in Lie groups of higher rank?  
[Kapovich-Leeb-Porti, Guichard-Kassel-W, Canary-Lee-Stover, Danciger-Gueritaud-Kassel]

Structure theory for discrete subgroups of affine groups            ?Gn V
[Goldman-Margulis-Minsky-Labourie, Abels-Margulis-Soifer, Choi-Goldman, Danciger-Gueritaud-Kassel, Smilga, Ghosh]

Is there a complex analytic theory of higher Teichmüller spaces? [Dumas-Sanders]



Conclusion

Get on your diving gear
and explore! 

With higher Teichmüller spaces and Anosov representations we see the beginnings of a 
structure theory of “nice” discrete subgroups of higher rank Lie groups. 

Lattice in Lie groups have been fairly well understood. 

For a long time it seemed out of reach to find interesting classes 
of discrete subgroups of higher rank Lie groups, which are not lattices.

General discrete subgroups are much harder to investigate.  

But there is a lot waiting to be discovered beneath the surface!  


