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We are considering the focusing, energy critical nonlinear wave
equation in 3 space dimensions

8
<

:

@2
t u ��u � u5 = 0, x 2 R3, t 2 R

u|t=0 = u0 2 Ḣ1,
@tu|t=0 = u1 2 L2.

(NLW)
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By using the contraction mapping principle one can show that if

kSL(t)(u0, u1)kL5I L10x  �0,

then we have a unique solution in the interval I , and hence, by the
Strichartz estimate, if (u0, u1) is small in Ḣ1 ⇥ L2 we can take I = R.
Moreover, the solution scatters, i.e. 9(w+

0 ,w+
1 ) 2 Ḣ1 ⇥ L2 such that

lim
t!1

k~u(t)� ~SL(t)(w
+
0 ,w+

1 )kḢ1⇥L2 = 0.

We can also show that, for large data (u0, u1), we have a solution u with
maximal interval of existence I = (T�(u),T+(u)), and T+ < 1 if and
only if kukL5[0,T+)L

10
x
= 1. Moreover, if kukL5[0,T+)L

10
x
< 1 then T+ = 1

and u scatters.

Carlos Kenig Non–radial Energy Critical Wave Equation 3 / 35



The energy norm k · kḢ1⇥L2 is “critical,” since, for � > 0,

u�(x , t) = ��1/2u(x/�, t/�)

is also a solution and k(u0,�, u1,�)kḢ1⇥L2 = k(u0, u1)kḢ1⇥L2 .

The equation has two conservation laws, energy and momentum

E (u0, u1) =
1

2

Z
|ru0|2 + |u1|2 dx � 1

6

Z
|u0|6dx ,

P(u0, u1) =

Z
u1ru0 dx .

The negative sign in the energy indicates that the equation is focusing.
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Moreover, there are solutions which blow–up in finite time (i.e.
T+ < 1) even with sup0<t<T+

k~u(t)kḢ1⇥L2 < 1 (bounded solutions).

There are also bounded solutions with T+ = 1, which do not
scatter, for instance nontrivial solutions of the elliptic equation, Q 2
Ḣ1\{0}, �Q + Q5 = 0 (Q 2 ⌃). For example,

W (x) =

✓
1 +

|x |2

3

◆�1/2

,

which is the one of smallest energy (the “ground state”). ±W� are the
only radial elements of ⌃.
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Other non–scattering solutions are the traveling wave solutions,
obtained by the Lorentz transformations of Q 2 ⌃. For ~̀ 2 R3, |~̀| < 1,
we have Q~̀(x , t) = Q~̀(x � ~̀t, 0), where

Q~̀(x , 0) = Q

0

@

2

4 1q
1� |~̀|2

� 1

3

5
~̀ · x
|~̀|2

~̀+ x

1

A ,

Q 2 ⌃. These are are all of the traveling wave solutions (DKM 14).
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Theorem (“Ground–state conjecture,” K–Merle 08)

If E (u0, u1) < E (W , 0) then:

a) If kru0k < krW k, then T+ = 1, T� = �1 and u scatters.

b) If kru0k > krW k, then T+ < 1, T� > �1.

c) The case kru0k = krW k is impossible.

What happens beyond this? This is what the soliton resolution
conjecture addresses, and this only can hold for bounded solutions.
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For a bounded solution with T+ < 1, we define the singular set S
as follows: x0 is regular if 8" > 0, 9R > 0 such that 80 < t < T+, we
have

Z

|x�x0|<R
|rux ,t(x , t)|2 dx < ".

S is the complement of the set of regular points.
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We have (DKM 11):

Theorem

S is a non–empty finite set. Moreover,

~u(t) *t!T+ (v0, v1)

in Ḣ1 ⇥ L2 and if v is the solution of (NLW) with ~v(T+) = (v0, v1), we
have

supp ~a(t) ⇢
N[

k=1

{(x , t) : |x � xk | < |T+ � t|},

where S = {x1, x2, . . . , xN} and a(t) = u(t)� v(t).

In the radial case, S = {0}.
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Moreover, soliton resolution holds, for a well chosen sequence of
times, (DKM 12), and then for all times (DKM 13).

The key idea in the proof of (DKM 13) was to use the “channel
of energy” method to quantify the ejection of energy that occurs as we
approach T+ in an unbounded spatial domain.
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This was accomplished by using a strong “outer energy lower bound”
for radial solutions of the linear wave equation, which was then used to
give a new dynamical characterization of W .

This “outer energy lower bound” fails in the non–radial setting and
in even dimensions in the radial setting. In higher odd dimensions, a
weaker form does hold.
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The proof of DKM 12, for a well–chosen sequence of times relied
first on the fact that there is no self–similar behavior at the blow–up
time (or at infinity for non–scattering solutions).

This can be proved for radial solutions in all dimensions through an
analogy with wave maps (CKLS 2014).
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One then uses virial identities to prove that (say when T+ = 1)

lim
t"1

1

1� t

Z 1

t

Z

|x |<1�s
(@tu)

2 dxds = 0,

lim
t"1

1

1� t

Z 1

t

Z

|x |<1�s

⇥
|ru|2 � u6

⇤
dxds = 0.

From these facts and a Tauberian argument to select a well–chosen
sequence of times, the result can be proved in all dimensions (Jia–K
2015). Unfortunately, these facts don’t hold in the non–radial case.
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Thus, some of the new di�culties in the non–radial case are that
the set of traveling waves Q~̀ is very large and far from being understood,
and that the analogs of the “outer energy lower bounds” for the linear
equation fail in the non–radial case. Thus, an approach based on a
dynamical characterization of traveling waves seems doomed to failure.

We now turn to the result in the non–radial case, treated in works
of Jia 2015 and DKM 16, DJKM 16. We have:
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Theorem

Let u be a solution to (NLW) such that

sup
0t<T+

k(u(t), @tu(t))kḢ1⇥L2 < 1.

i) T+ < 1. Let S be the set of singular points. Fix x⇤ 2 S . Then
9J⇤ 2 N, J⇤ � 1, r⇤ > 0, (v0, v1) 2 Ḣ1 ⇥ L2, a time sequence tn " T+ (well
chosen), scales �j

n, 0 < �1
n ⌧ �2

n ⌧ · · · ⌧ �j
n ⌧ (T+ � tn), positions c jn 2 R3

such that c jn 2 B�(T+�tn)(x⇤), � 2 [0, 1), with ~̀
j = limn

cjn�x⇤
T+�tn

well defined,

|~̀j |  �, and traveling waves Q j
~̀
j
for 1  j  J⇤ such that in the ball Br⇤(x⇤)

we have

~u(tn) = (v0, v1)

+
J⇤X

j=1

⇣
(�j

n)
� 1

2Q j
~̀
j

⇣x � c jn

�j
n

, 0
⌘
, (�j

n)
� 3

2 @tQ
j
~̀
j

⇣x � c jn

�j
n

, 0
⌘⌘

+ oḢ1⇥L2(1).

Moreover, �j
n/�

j0

n + �j0

n /�
j
n + |c jn � c j

0

n |/�j
n !n 1, j 6= j 0.
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Theorem (Non–radial result cont.)

ii) T+ = 1. 9! vL solving the linear wave equation, such that, 8A � 0

lim
t!1

Z

|x|�t�A

|rx,t(u � vL)(x , t)|2 = 0.

Moreover, there exist J⇤ 2 N, J⇤ � 0, a time sequence tn " 1 (well chosen),
scales �j

n, 0 < �1
n ⌧ �2

n ⌧ · · · ⌧ �j
n ⌧ tn, positions c

j
n 2 B�tn(0), � 2 [0, 1),

with ~̀
j = limn

cjn
tn

well defined, |~̀j |  �, and traveling waves Q j
~̀
j
for

1  j  J⇤ such that

~u(tn) = ~vL(tn)

+
J⇤X

j=1

⇣
(�j

n)
� 1

2Q j
~̀
j

⇣x � c jn

�j
n

, 0
⌘
, (�j

n)
� 3

2 @tQ
j
~̀
j

⇣x � c jn

�j
n

, 0
⌘⌘

+ oḢ1⇥L2(1),

and �j
n/�

j0

n + �j0

n /�
j
n + |c jn � c j

0

n |/�j
n !n 1, j 6= j 0.
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Remark 1. On the radiation term. When T+ < 1, as we saw, the
singular set is finite and (v0, v1) = weak limit as t ! T+ of ~u(t) exists,
and if v is the solution of (NLW) with data (v0, v1) at t = T+, then
supp ~a(t) ⇢ [x⇤2S{|x � x⇤| < |T+ � t}, 0 < t < T+. The number r⇤
in i) is chosen so that |x � x⇤| < r⇤ stays away from the other cones.

The case T+ = 1 is much more delicate. In fact, the existence
of vL as in ii) is proved in DKM 16, where it is called the “scattering
profile.” It was shown there that ~SL(�t)(~u(t)) *t!1 (v0, v1) and that
vL(x , t) verifies the first property in ii).
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The key idea in the proof of this is the use of a combination of virial
identities to show that there are no “blocks” in u (non–linear profiles)
which remain close to the light cone {|x | = t}, which is where linear
solutions live. This is coherent with the fact that traveling waves with
bounded energy travel at a speed strictly smaller than 1. The argument
is tricky.
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Remark 2. i) was proved by Jia (2015), but with the weaker vanish-
ing property of the error ("0,n, "1,n), that kSL(t)("0,n, "1,n)kL5t L10x !n 0
(dispersive norm goes to 0).

The rest of the theorem is in DJKM 16, except, as explained before,
for the existence of vL in ii) which is in DKM 16.
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We will now sketch some ideas for the proof of i). The proof of ii)
is analogous, once we have constructed vL.
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For simplicity of notation, we will assume that u is defined for
0 < t < �, with blow–up time T� = 0. We choose r⇤ so that ~u(x , t) =
~v(x , t), for t < |x | < r⇤, � < r⇤. Our first observation is that, since
v 2 L5(0,�)L

10
x , and @tv 2 L1(0,�)L

2
x , v

6 2 L1
�
{(x , t) : |x | = t, 0 < t <

�}
�
. Thus, the same property holds for u. This allows one to control

the energy flux, namely to show that

lim
⌧!0

Z t

⌧

Z

|x |=s

|/@u|2

2
+

����@tu +
x

|x | ·ru

����
2

d� < 1,

where |/@u|2 = |ru|2 �
��� x
|x | ·ru

���
2
. (This is by di↵erentiating the trun-

cated energy
R
|x |<t

1
2(|ru|2 + |@tu|2)� 1

6 |u|
6 dx .)
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Then, one uses this information, inspired by the wave map case, to
obtain a crucial Morawetz identity: For 0 < 10t1 < t2 < �, we have

Z t2

t1

Z

|x |<t

h
@tu +

x

t
·ru +

u

2t

i2
dx

dt

t
 C log

✓
t2
t1

◆1/2

.

This is very useful because the right hand side has the power 1/2 <

1, which forces
R
|x |<t

⇥
@tu + x

t ·ru + u
2t

⇤2
dx to vanish on average.
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A Tauberian type real variable argument then shows that we can
choose µn # 0, t1,n 2

�
4
3µn,

13
9 µn

�
, t2,n 2

�
14
9 µn,

5
3µn

�
such that

sup
0<⌧<

ti,n
16

1

⌧

Z

|ti,n�t|<⌧

Z

|x |<t

h
@tu +

x

t
·ru +

u

2t

i2
dx dt !n 0, (‡)

for i = 1, 2.

From this, at each ti ,n, an analysis of di↵erent “blocks” (non–linear
profiles) in ~u(ti ,n) � ~v(ti ,n), gives a preliminary decomposition: each

“block” has a space–time “center” (c ji ,n, t
j
i ,n) and a “scale” �j

i ,n. For
convenience, let’s drop the indices i , and call tn = ti ,n. Fix a “block”
U j0 .
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Case 1: t j0n ⌘ 0, �j0
n ' tn. Then (‡) gives that the “block” U j0

verifies the first order equation

@tU
j0 +

x

t + 1
·rU j0 +

1

2(t + 1)
U j0 = 0,

which forces U j0(x , t) = (t + 1)�1/2 
⇣

x
t+1

⌘
and U j0 solves (NLW).

This is a self–similar solution, ruled out by K–Merle 08.

Case 2: t j0n ⌘ 0, �j0
n ⌧ tn. In this case, (‡) gives that the “block”

U j0 verifies the first order equation

@tU
j0 + ~̀

j0 ·rU j0 = 0,

where ~̀
j0 = limn c

j0
n /tn. But then, U j0(x , t) =  (x � ~̀

j0t) and solves

(NLW), so that DKM 14 gives that U j0(x , t) = Q j0
~̀
j0

(x � ~̀
j0t, 0).
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Case 3:
���t j0n /�j0

n

��� !n 1. Here we just add these “blocks” to

the residue term, and use that they scatter, and for a linear solution h,
kh(t)kL6x !|t|!1 0.

Since we have only finitely many “blocks” by the boundedness of u
and the Pythagorean property of blocks, together with the lower bound
kQkL6 � kW kL6 , Q 2 ⌃, and by the localization of the support of ~u�~v ,
we have |c jn| + |t jn| + �j

n . |tn|, we have covered all cases and we have
obtained a preliminary decomposition at t1,n and at t2,n, with the error
going to 0 in L6.
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We next improve this, by using an argument that originated in the
work of Jia–K 2015, using virial identities. It is in this argument that
we need the two sequences {t1,n}, {t2,n}.

By multiplying the equation by u and integrating by parts, we have

0 =
1p
2

Z t2,n

t1,n

Z

|x |=t

✓
�@tu � x

|x | ·ru

◆
u d�

+

Z

|x |<t2,n

(u@tu)(x , t2,n)dx �
Z

|x |<t1,n

(u@tu)(x , t1,n)dx

+

Z t2,n

t1,n

Z

|x |<t
[|ru|2 � |@tu|2 � |u|6] dx dt.
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Using the preliminary decomposition at t1,n, t2,n, we can show that
ku(·, ti ,n)kL2(Bi,n) = o(ti ,n). This, combined with the above identity and
the control of the energy flux gives us:

1

t2,n � t1,n

Z t2,n

t1,n

Z

|x |<t

⇥
|ru|2 � |@tu|2 � |u|6

⇤
dx dt !n 0.
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From this, a Tauberian real variable argument shows that we can
find tn 2 [t1,n, t2,n] such that

lim
n!1

sup
0<⌧< tn

16

1

⌧

Z

|tn�t|<⌧

Z

|x |<t

h
@tu +

x

t
·ru +

u

2t

i2
dxdt = 0,

and

lim
n

Z

|x |<tn

[|ru|2 � |@tu|2 � |u|6](x , tn)dx  0.
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From the first information, we obtain a decomposition at tn, with
k"0,nkL6 !n 0. Since

Z
[|rQ~̀|2 � |@tQ~̀|2 � |Q~̀|6]dx = 0, 8t,

Z
[@tQ~̀+ ~̀ ·rQ~̀]

2dx = 0,

we deduce that

lim
n!1

Z

|x |<tn


"1,n +

x

tn
·r"0,n

�2
dx = 0,

lim
n!1

Z

|x |<tn

Z

|x |<tn

⇥
|r"0,n|2 � "21,n

⇤
dx  0.
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These two facts, combined with the localization property

lim
n!1

Z

|x |>tn

[|r"0,n|2 + "21,n]dx = 0,

easily yield

k"0,nkL6 + k/@"0,nkL2 + kr"0,nkL2(B�tn[Bc
tn
)

+ k"1,nkL2(B�tn[Bc
tn
) +

����"1,n +
x

tn
·r"0,n

����
L2(Btn )

!n 0

for any 0 < � < 1.
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The next step is to show, from these properties, that

kSL(t)("0,n, "1,n)kL5t L10x !n 0.

The arguments here are similar to some contained in the proof of the
extraction of the “scattering profile.”

The final step in the proof is provided by a new “channel of energy”
argument which is very robust, valid in all dimensions, non–radial, and
a key new ingredient in the theory.
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Lemma

Let ("0,n, "1,n) be a bounded sequence in Ḣ1 ⇥ L2 such that
8� 2 (0, 1) we have

k"0,nkL6 + k("0,n, "1,n)kḢ1⇥L2(B�[Bc
1 )

+ k/@"0,nkL2 + k"1,n + @r"0,nkL2
!n 0.

Then, if infn k("0,n, "1,n)kḢ1⇥L2 > 0, and wn(x , t) = SL(t)("0,n, "1,n),
we have, 8⌘0 2 (0, 1), n large that

Z

|x |�t+⌘0

|rx ,twn(t)|2dx � ⌘0
2
k("0,n, "1,n)k2Ḣ1⇥L2

,

for all t > 0.
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Next, in our case, the fact that kwnkL5t L10x !n 0, allows us to pass
to the solution of (NLW). To obtain a contradiction, we bypass the
traveling waves by choosing ⌘0 > �, where |~̀j |  �, and use finite
speed:

Write (h0,n, h1,n) = ~v(tn) + ("0,n, "1,n), and use that, if ⌘0 > �,

k(h0,n, h1,n)� ~u(tn)kḢ1⇥L2(|x |�⌘0tn)
! 0,

and let hn be the corresponding solution of (NLW).
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Then ~hn(t) = ~v(t)+ ~wn(t)+ ~rn(t) by the Approximation Theorem
and

sup
t2(tn,�)

k~u(t)� ~hn(t)kḢ1⇥L2(��|x |�t�tn+⌘0tn)
!n 0,

by finite speed.

We obtain a contradiction by using the channel of energy Lemma
rescaled to scale tn to get, if k("0,n, "1,n)kḢ1⇥L2 � µ0, that for 0 < t <
�,

Z

t�|x |�t�tn+⌘0tn

|rx ,tu(t)|2 �
⌘0µ0

100
,

and letting t = �/2, we get a contradiction for n large.
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Thank you for your attention.
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