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The Pillow Problem

In 1895, Charles Dodgson (better known by his pen name
Lewis Carroll) published a book of 72 mathematical problems
designed to be solved “while lying in bed”
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57. (25, 80)

In a given Triangle describe three Squares, whose bases
shall lie along the sides of the Triangle, and whose upper
edges shall form a Triangle ;

(1) geometrically; (2) trigonometrically.  [27/1/o1

58. (25, 83)
Three Points are taken at random on an infinite Plane.
Find the chance of their being the vertices of an obtuse-
angled Triangle. [20/1/84



Carroll’s problem is ill-posed

Question
What does it mean to choose a random triangle?

The issue of choosing a “random triangle” is
indeed problematic. | believe the difficulty is explained
in large measure by the fact that there seems to be

no natural group of transitive transformations acting
on the set of triangles.

—Stephen Portnoy, 1994
(Editor, J. American Statistical Association)

There have been many approaches which solve the problem of
defining a random triangle in different ways [Guy, Kendall,
Portnoy, Edelman/Strang, ... ].



Choosing a random triangle

Let a, b, and ¢ be the sidelengths of the triangle. The space of
triangles is parametrized by choices of a, b and c¢ satisfying a
collection of conditions

a>0,b>0,¢c>0, and a+b+c=2
and the triangle inequalities
b+c>a

a+c>b
at+b>c




Choosing a random triangle (2)

We can rewrite the triangle inequalities as

—-a+b+c>0
a-b+c>0
at+tb-c>0

If s = &+5+¢ (the semiperimeter) this suggests new variables:

Sa::S—a:%b—'_CZO
sM:s—bzfigifzo
sc:_s—c_EHg_CzO

Note that s+ sp + Sc =s=1.



Square roots

This triangle of triangles is covered 8-fold by the sphere.

y

Sp

(x2,y2,22)

Sc

xX>=s,=1-a, y>?=s,=1-b, Z2=s.=1-¢

We will use x, y, and z as coordinates on triangle space. The
measure will be surface area on the sphere.



Triangle Geometry
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Proposition
|x|, ly|, and |z| are (pairwise) geometric means of the exradlii.
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Off-axis rotations
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Carroll’s problem

The Pythagorean theorem implies that right triangles have

X22 = 22, P22 or 2x2— )2

Theorem (with Needham, Shonkwiler, Stewart)
The fraction of obtuse triangles is 3 — 3I"2 ~ 0.838093



Generalizing to n-gons: start over

Suppose the edges are complex numbers ey, ..., e, € C.
The polygon is closed, so

e1+-+e,=0
Let e; = z2 and z; = u; + iv;.

O=e + - +e, =22+ + 22
:(U1+iV1)2+"‘+(Un+iVn)2
= (U8 — V&) +i(Ruyvy) + - + (U2 — vB) +i(2unVp)

= (W4 + U= V2 — = VA 2i(g vy £ -+ UnVy).

orif = (uy,...,up)and v=(vq,...,Vp)

d@? = [V? and (@,V)=0



Generalizing to n-gons: start over (2)

If we fix the total polygon length to be 2, we have

2=lei|+---+lenl =217+ + |20
=Uf+VE+ UG+ VE

= |d[? + |77
This gives us:

Theorem (Knutson/Hausmann 1997)

If the edges of an n-gon are e; = z;2 and each z; = u; +1v;, then
the polygon is closed and length 2 <= i and vV are
orthonormal.



Generalizing to n-gons: start over (2)

If we fix the total polygon length to be 2, we have
2= o]+ -+ lenl = [z1* + -+ |zof?
=Uf+VE+ -+ UG+ VE

= |d[* +|v]°.
This gives us:

Theorem (Knutson/Hausmann 1997)

The space of closed, length 2 plane polygons is 2"-fold covered
by the “Stiefel manifold” V>(R") of orthonormal 2-frames in R".
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Rotations
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Rotations

Rotations in the plane of 4 and Vv rotate the z; and rotate the

edges e; = z2 twice as fast.

Theorem (Knutson/Hausmann 1997)

The plane spanned by U and v determines the polygon up to
rotation.



Rotations

Rotations in the plane of & and V rotate the z; and rotate the

edges e; = z?2 twice as fast.

Theorem (Knutson/Hausmann 1997)
The space of closed, length-2 plane polygons up to translation

and rotation is covered by the “Grassmann manifold” Go(R")
of 2-planes in R".



Bringing the pictures together: G;(R3) = Go(RR3)

If (x,y, z) is orthonormal to ¥ and Vv, then

X U W
y U W is orthonormal.

Z Uz V3

So

XCHud+vi=1, or x*=1-0u2-Vv?

but
z1P = |es| = a

so this is our original equation

x*=1-a



Generalizing (x, y, z): Plicker Coordinates

Definition
Any 2-plane P in R" spanned by 4, v is described by a
skew-symmetric n x n matrix of Plicker coordinates

up v

A(P); = det (u, V

) = ) < (@)

defined up to multiplication by a common scalar. (Changing the
basis for P only changes the scalar, so the Pllcker coordinates
depend only on the plane.)

Our coordinates (x, y, z) are the Plicker coordinates in the
upper triangle of the 3x3 matrix for Go(IR3).



The Positive Grassmannian

Definition
The Positive Grassmannian is the portion of the Grassmannian
where all Pliicker coordinates in the upper triangle are positive

AP >0 <= i<

It has attracted a lot of interest in string theory and has a
beautiful and somewhat mysterious structure.

Theorem (with Needham, Shonkwiler, Stewart)

The positive Grassmannian Go(R")™ consists of planes P
where (a;, b;) lie in a common semicircle and the polygon is
convex. Go(R") is tiled by 22 x (n — 1)! isometric copies of
Go(R™M)*.

(A comparable interpretation appears in Section 5.3 of
Arkani-Hamed, 2012.)



Random polygons

There is a natural way to measure volume in Go(R") which is

O(n) invariant (Haar measure). Using this as a probability
measure on polygons:

Theorem (with Needham, Shonkwiler, Stewart)
The probability that a random n-gon is convex is 2/(n— 1)!.

Theorem (with Needham, Shonkwiler, Stewart)

Among random quadrilaterals, 1/3 are convex, 1/3 are reflex,
and 1/3 are self-intersecting.



Random n-gons

It is easy to sample a random 2-plane in R" uniformly: just pick
two vectors of nindependent Gaussians and take the plane
they span. Here’s a random 500-gon:




Geometric Probability Calculations

Theorem (with Deguchi, Shonkwiler)

The edgelength of a random quadrilateral is uniformly
distributed on [0, 1]. The edgelength of a random n-gon is
sampled from a Beta distribution with probability density

o) = (5 -1) (1= )5~

Quadrilaterals 12-gons




Geometry of random n-gons

Definition
The radius of gyration of an n-gon v4, ..., v, is the average
(squared) distance between vertices:

1 n
2
= lvi—vy|

ijel

Theorem (with Deguchi, Shonkwiler)
The expected radius of gyration of a random planar n-gon is

2_n+i1
3n(n+2)
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Space Polygons

Space polygons have a similar structure, if we replace G>(R")
with Go(C"), view edges as quaternions rather than complex
numbers, and replace squaring with the Hopf map.




Geometric Probabilities

All this structure lets you compute some exact probabilities:

Theorem (with Deguchi, Shonkwiler)

The expected radius of gyration of a random n-gon in R3
sampled from Go(C") is
1

2n

Theorem (with Grosberg, Kusner, Shonkwiler)

The expected total curvature of a random n-gon in R® sampled
from Go(C") is
T T 2n

2"t 42n_3



...and beyond!

From here, you can go in various directions:

¢ polygons of fixed edgelength (e.g. equilateral polygons)
(with Shonkwiler-Duplantier-Uehara)

e polygons of fixed thickness (Chapman, Plunkett)

¢ linkages and computational geometry

e polygons of fixed bending angle (e.g. molecular models)

e curves instead of polygons (Needham)

« different topologies, such as #-curves (Deguchi, Uehara)

¢ shape recognition (Needham, Mumford-Shah-Younes)

e random knots and links (Chapman, Hass, Millett, Rawdon)

...and we invite you to our paper session tomorrow morning!

8:30-11:50am, A602, Atrium Level, Marriott Marquis



