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Overview

Modeling of physical phenomena leads to tracking fronts
moving with curvature-dependent speed.

When the speed is the curvature this leads to one of the
classical degenerate non-linear differential equations.

One naturally wonders, "What is the regularity of
solutions?"
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Examples of tracking evolving fronts I

Forest fire.

After two fires merge, the evolving front is connected.
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Examples of tracking evolving fronts II

Oil droplets in water can be modeled as evolving fronts.
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Moral

We will be interested in optimal regularity of evolution
equations for physical phenomena.

Moral: Without deeply understanding the underlying
geometry, it is impossible to prove fine analytical
properties.

Joint work with Bill Minicozzi.
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Mean curvature I

Suppose Σ ⊂ Rn+1 is a hypersurface.

n is the unit normal of Σ.

H = divΣ (n) is the mean curvature.

divΣ (n) =
∑n

i=1〈∇ei n,ei〉; where ei is an orthonormal
basis for the tangent space of Σ.
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Mean curvature II

Mean curvature is average of principal curvatures.
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Mean curvature III

Physically: mean curvature = surface tension.
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Level set

If Σ = u−1(s) for a regular value for the function
u : Rn+1 → R.

Then n = ∇u
|∇u| and H = div

(
∇u
|∇u|

)
.
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Mean curvature flow

Mean curvature flow: Hypersurfaces Mt evolving by

∂x
∂t

= −H n .

H is the mean curvature, n the unit normal, of Mt at x .
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Origins

“Geometric heat equation”.

First studied in mathematics in the 1910s by Birkhoff.

Independently studied already in the 1920s in material science.

H is surface tension: Area decreases most efficiently.

Colding Arrival time



Origins

“Geometric heat equation”.

First studied in mathematics in the 1910s by Birkhoff.

Independently studied already in the 1920s in material science.

H is surface tension: Area decreases most efficiently.

Colding Arrival time



Origins

“Geometric heat equation”.

First studied in mathematics in the 1910s by Birkhoff.

Independently studied already in the 1920s in material science.

H is surface tension: Area decreases most efficiently.

Colding Arrival time



Origins

“Geometric heat equation”.

First studied in mathematics in the 1910s by Birkhoff.

Independently studied already in the 1920s in material science.

H is surface tension: Area decreases most efficiently.

Colding Arrival time



Spheres and cylinders I

Simple examples of MCF in R3:

2-spheres of radius
√
−4t for t < 0.

Cylinders of radius
√
−2t for t < 0.

Both are singular at t = 0. “Finite time extinction”.
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Spheres and cylinders II

Spheres

Cylinders

Planes

Cylinders, spheres and planes are self-similar solutions of MCF.
The shape is preserved, but the scale changes with time.
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Two key properties

H is the gradient of area, so MCF is the negative gradient
flow for volume (Vol(Mt ) decreases most efficiently).

Avoidance principle.
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Avoidance property

If M0 and N0 are disjoint, then Mt and Nt remain disjoint.

If they touch later, the maximum principle gives a contradiction.
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Curve shortening flow

When n = 1 and the hypersurface is a curve, this is the
curve shortening flow.

A (round) circle shrinks through (round) circles to a point in
finite time.

Example of a snake.

Theorem (Grayson): Any simple closed curve shrinks to a
round point in finite time.
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The snake

Grayson: even a tightly wound region becomes round under
curve shortening flow.
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The marriage ring shrinks to a circle

A thin torus of revolution will flow smoothly until it disappears
along a circle.
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Dumbbell

Grayson’s dumbbell, 1989: 2 large bells connected by thin bar.

Under MCF the neck first pinches off, cutting it into two.

Later, each bell shrinks to a round point.
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6 snapshots of the dumbbell MCF

Grayson’s dumbbell; initial surface, step 1 and 2.

Dumbbell; steps 4, 5 and 6.
Revolution: Altschuler-Angenent-Giga, Soner-Souganidis.
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Level set method I

Level set method, Osher-Sethian, 1989:

Choose an initial function on R3 with M0 as the level set.

Simultaneously flow every level set (disjoint by avoidance).

This leads to a degenerate parabolic equation.

Tremendously successful numerically.
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Level set method II

The gray areas represent trees that a forest fire has not yet
reached. The fire front is given as a level set of an evolving
function in the second line.
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Examples I

Crystal growth can be modeled by the Level Set Method.
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Examples II

Droplets can be modeled by the Level Set Method.
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Level set flow

Evans-Spruck and Chen-Giga-Goto, 1991:
Continuous viscosity solutions, unique, agree with classical
solution.

A major success of Crandall-Lions viscosity solution theory.
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Mean convex MCF I

A surface is mean convex if H > 0.

Evans-Spruck, Chen-Giga-Goto, White:

If H > 0, then Mt moves monotonically inward and sweeps out
the domain Ω inside M0.
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Mean convex MCF II

Define the arrival time u on Ω by

u(x) = {t | x ∈ Mt} .
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Balacing games

Kohn-Serfaty, 2006: The arrival time has a game theoretic
interpretation (to a deterministic game).

Game invented in the 1970s by Joel Spencer.
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Arrival time for examples

For spheres of radius
√
−4t , u = −1

4(x2
1 + x2

2 + x2
3 ).

For cylinders about the x3-axis, u = −1
2 (x2

1 + x2
2 ).

Two key features:

Critical points of u are singularities of the flow.

Second order Taylor series describes the singularity.
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Arrival time

u satisfies the degenerate elliptic equation

−1 = |∇u|div
(
∇u
|∇u|

)
= ∆ u − Hessu

(
∇u
|∇u|

,
∇u
|∇u|

)
.

Evans-Spruck, Chen-Giga-Goto, 91: u is Lipschitz.

Ilmanen, 92: Examples where u is not C2.
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Optimal regularity

C-M, 2016:

u is twice differentiable everywhere.

At critical points, hessian matches the sphere or cylinder.

This degenerate elliptic equation was solved in the viscosity
sense 25 years ago - solutions turn out to be classical.

While second derivatives exist, they may not be continuous.
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Differentiability in the convex case

In the convex case:

Huisken, 1990: u is C2.

Kohn-Serfaty, 2006: u is C3 in R2.

Sesum, 2008: convex M0 where u is not C3.
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When is u C2?

C-M, 2016:

C2 iff one critical value and the critical set is either:

1 A single point where Hessian is spherical.
2 A simple closed C1 curve where Hessian is cylindrical.

In (2), the kernel of Hessian is tangent to the curve.

Sphere, cylinder, ring are C2; dumbbell is not.
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Singular set

The singular set for the flow is where the evolving
hypersurfaces are NOT smooth.

Singular points for the flow = critical points for the arrival
time function.
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Recall arrival time examples

For spheres of radius
√
−4t , u = −1

4(x2
1 + x2

2 + x2
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For cylinders about the x3-axis, u = −1
2 (x2

1 + x2
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Proof of twice differentiable

Twice differentiable is equivalent to that at a critical point
the function is up to higher-order terms equal to the
quadratic polynomial.

This second-order approximation is the arrival time of the
shrinking round cylinders.

It suggests that the level sets should be approximately
cylinders.
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Uniqueness of cylinders

It suggests that those cylinders are nearly the same (after
rescaling to unit size).

Illustrates a situation that turns out to be impossible.

This last property is the key to proving that the function is
twice differentiable.
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Inspiration: real algebraic geometry

The proof relies on a key new inequality that draws its
inspiration from real algebraic geometry.

This kind of uniqueness is a famously difficult problem in
geometric analysis, and no general case had previously
been known.
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