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Background

Let M be a manifold equipped with a nondegenerate closed 2-form ω (the

symplectic form).

We assume that a Lie group G acts preserving ω, and that the action is obtained

from the Hamiltonian flows of a collection of Hamiltonian functions (moment

maps Φ : M → Lie(G)∗).

Example

Examples: the orbits of the (co)adjoint action of G on its Lie algebra are

symplectic manifolds, and the moment map is the inclusion into the Lie algebra.

Special case: S1 ⊂ SU(2) acts by rotation on S2, which is the orbit of the adjoint

action of SU(2) on its Lie algebra.



Example 1: S1 rotation action on S2 = CP 1
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Two ingredients:

• rotation action S1
y CP 1 via

eiθ[z1, z2] = [z1, e
iθz2], moment map Φ

(height function).

• automorphism τ of CP 1 given by

τ [z1, z2] = [z1, z2], fixed points RP 1



Facts:

1. Φ(CP 1) = Φ(RP 1)

2. Cohomology rings:

- ordinary cohomology

H∗(CP 1;Z2) = Z2[c]/〈c
2〉, deg c = 2

H∗(RP 1;Z2) = Z2[w]/〈w
2〉, degw = 1

⇒ H2∗(CP 1;Z2) ≃ H∗(RP 1;Z2)



General Situation: A conjugation space [Hausmann, Holm, Puppe 2005] is a

symplectic manifold (M,ω) with

• Hamiltonian torus action T y M , moment map Φ : M → t
∗

• involution τ : M → M

(τ ◦ τ = idM )

τ∗ω = −ω (τ is anti-symplectic)

τ compatible with T action [Duistermaat 1983]:

τ(t.x) = t−1.τ(x), ∀t ∈ T, x ∈ M

Denote M τ = {x ∈ M : τ(x) = x} (real locus). The real locus is a Lagrangian

submanifold of M (in other words ω restricts to 0 on it, and its dimension is half

the dimension of M).



Examples (HHP 2005):

• coadjoint orbits (with the Chevalley involution)

• toric manifolds

• complex Grassmannians

• polygon spaces (for example Klyachko 1994, Kapovich-Millson 1996)

• CPn with the standard action of U(1)n and the involution given by complex

conjugation.

The real locus is RPn.



Assume M is compact.

Theorem 1. (Duistermaat 1983)

Φ(M) = Φ(M τ ).

Theorem 2. (Hausmann-Holm-Puppe 2005) Under some additional hypotheses

(e.g. MT discrete) we have ring isomorphisms

H2∗(M ;Z2) ≃ H∗(M τ ;Z2)

Goldin-Holm (2004) studied the real locus of a symplectic reduced space under a

torus action, and its image under the moment map.



II. Toric manifolds

Delzant’s theorem: Toric manifolds: If M is a symplectic manifold of real

dimension 2n admitting an effective Hamiltonian action of a torus of dimension n

(a toric manifold), the image of the moment map is a convex polyhedron (the

Delzant polytope). Any two such with the same moment polytope are

diffeomorphic via a T -equivariant diffeomorphism that respects the moment maps.

If M is a toric manifold with a compatible antisymplectic involution, then

Duistermaat’s theorem asserts that the moment map maps the fixed point set of

the involution onto the Delzant polytope. This is not necessarily a bijection

though.

Example: projective space CPn is equipped with the Hamiltonian torus action of

U(1)n and the involution given by complex conjugation. The fixed point set is

RPn. A simple examination of the fixed point set shows that the moment map is

not a bijection between the fixed point set and the tetrahedron.



III. THE BASED LOOP GROUP ΩG (Pressley-Segal 1988)

Goal. Extend Theorems 1 and 2 to M = ΩG (based loops in the compact Lie

group G)

Set-up:

• G is a simply connected simple compact Lie group, T ⊂ G maximal torus

• ΩG = {γ : S1 → G : γ(1) = e}

• T action on ΩG: (t.γ)(z) = tγ(z)t−1

• S1 action on ΩG: (eiθγ)(z) = γ(eiθz)
(

γ(eiθ)
)

−1
(“rotation” – note we must

preserve the condition that γ(1) = e)



• T × S1
y ΩG is Hamiltonian, moment map Φ : Ω(G) → Lie(T )⊕ iR

• τ : G → G group automorphism, τ ◦ τ = idG

Note. Any semisimple compact Lie group G has an involution τ such that

τ(t) = t−1 for all t in a maximal torus T ⊂ G. This τ is essentially unique (the

Chevalley involution).

Example: G = SU(n), τ(g) = ḡ.

⇒ τ : Ω(G) → Ω(G), τ(γ)(eiθ) = τ(γ(e−iθ))

Obviously τ ◦ τ = idΩG



• Symplectic form:

ω(ξ, η) =
1

2π

∫ 2π

0

< ξ(θ),
dη

dt
(θ) > dθ

• Moment map for T action:

p(γ) =
1

2π

∫

prt(γ
−1dγ

dt
)dθ

• Moment map for S1 action:

E(γ) =
1

4π

∫

|(γ−1dγ

dt
)|2dθ



Theorem (Atiyah-Pressley 1983) The moment map (E, p) : ΩG → Lie(T )⊕ iR is

convex: in fact

Φ(ΩG)) = convex hull Φ(Ω(G)T×S1

). Identify fixed point set of T × S1 action on

ΩG: it consists of homomorphisms from S1 to T (the integer lattice).

Φ(Ω(SU(2))



IV. DUISTERMAAT TYPE CONVEXITY

Would like Duistermaat convexity:

(?) Φ(ΩG)τ ) = Φ(Ω(G))

Define an involution τ on ΩG as above: then τ compatible with the action

T × S1
y ΩG.

Extension of Duistermaat’s convexity theorem to the based loop group:

(*)

τ(s) = s−1

for all s in a maximal torus of G

Theorem. (Jeffrey-Mare 2010) If (*) holds, then the moment map

Φ : ΩG → Lie(T )× iR satisfies Φ(ΩG) = Φ
(

(ΩG)τ
)

.

Example.

G = SU(n), τ(g) = ḡ ∀g ∈ SU(n).

Standard maximal torus T :

t = Diag(z1, . . . , zn) where

|z1| = . . . = |zn| = 1, z1 . . . zn = 1.

Check τ(t) = t−1 ∀t ∈ T .



⇒ Φ(ΩG) = Φ
(

(ΩG)τ
)

.



0. Φ(ΩG) ⊂ Lie(T )⊕ iR is a

convex polytope (Atiyah-Pressley)

1. Φ ((ΩG)τ ) ⊂ Lie(T )⊕ iR is convex

(from Chuu-Lian Terng’s convexity theorem for isoparametric submanifolds in

Hilbert space)

2. If γ ∈ ΩG is such that Φ(γ) is a vertex of Φ(ΩG), then Φ(γ) = Φ(γ̃), for some

γ̃ ∈ Ω(G)τ .

0, 1, 2 ⇒ Φ(ΩG)) ⊂ Φ
(

(ΩG)τ
)



V. Extension of Duistermaat’s theorem to H∗ (ΩGτ )

Observation: if K := {g ∈ G : τ(g) = g}, then G/K is a Riemannian symmetric

space.

Bott and Samelson 1958, ‘mysterious application’:

dimH2q(Ω(G);Z2) = dimHq(Ω(G/K);Z2) ∀q ≥ 0

(ΩG)τ = {γ : S1 → G|τ
(

γ(eiθ)
)

= γ(e−iθ)

This identifies (ΩG)τ with

{γ : [0, 1] → G|γ(0) = e, γ(1) ∈ K}

where K = {k ∈ G|τ(k) = e}.

Ω(G/K) is homotopy equivalent to (ΩG)τ

(follows from homotopy theory argument known since introduction of Borel

construction, late 1950’s)



Example: G = SU(2), τ complex conjugation

K = SO(2) ∼= U(1)

G/K = S2 = CP 1



Mitchell (1988) gave an exposition which nicely explains Bott-Samelson’s

“mystery”:



Deduce CW decomposition of (ΩalgG)τ =
⊔

j C
τ
j .

Conclusion:

dimH2q
(

(ΩG);Z2

)

= dimH2q
(

ΩalgG;Z2

)

= #(2qdimensional cells Cj)

= #(q − dimensional cells Cτ
j ) = dimHq(ΩalgG)τ ;Z2) = dimHq(Ω(G)τ ;Z2)



Theorem. (Jeffrey and Mare) If τ is Chevalley involution of G and K = Gτ ,

then we have ring isomorphisms

(*) H2∗
(

ΩG;Z2

)

≃ H∗(Ω(G/K);Z2)

Main ideas of the proof.

• Identify Ω(G/K) = (ΩG)τ

• Replace ΩG by ΩalgG (see above).

Key point:

• τ leaves each cell of the CW decomposition invariant and acts on it as complex

conjugation (see above)

Thus, (ΩalgG, τ) is a spherical conjugation complex in the sense of Hausmann,

Holm, and Puppe (2005). Then (*) is a direct application of results of [HHP]

about spherical conjugation complexes with compatible torus actions.



VI. THE RINGS H∗(Ω(G/K);Z2)

Examples:

G = SU(2) :

K = SO(2) = S1

G/K = S2

H∗(ΩG;Z2) = Λ(γ1, γ2, γ4, γ8, . . .) (where the degree of γj is 2j).

Note: This is not valid without the assumption that the coefficient system is Z2.

H∗(ΩS2;Z2) = Λ(y1, δ1, δ2, δ4, δ8, . . .)

(where y1 is a cohomology class of degree 1 and δj are cohomology classes of

degree 2j). The ring isomorphism

I : H∗(ΩS2;Z2) → H∗(ΩG;Z2)

sends y1 to γ1 and δj to γj+1 for all j ≥ 1.



VII. Torus actions on moduli spaces of flat connections on 2-manifolds

•Moduli spaces of conjugacy classes of representations of the fundamental group

of a 2-manifold into a compact Lie group G have a natural system of

Hamiltonian flows (Goldman 1986).

• J-Weitsman (1992) observed that these flows are moment maps for a

Hamiltonian torus action on an open dense set of moduli space. In the case

G = SU(2) the dimension of the torus that acts is half the dimension of the

moduli space.

• These moduli spaces of conjugacy classes of representations are ordinarily

singular, but for genus 2 and G− SU(2) Narasimhan-Ramanan showed that

the moduli space is smooth and isomorphic to CP 3.

• In recent joint work with Nan-Kuo Ho, Khoa Dang Nguyen and Eugene Xia,

we have concluded that the Jeffrey-Weitsman torus actions can be used to

identify the preimages of the interior of the moment polytope and its faces

with the corresponding subsets of CP 3.

• We have also showed that the genus 2 moduli space is a conjugation space, by

exhibiting an involution compatible with the torus action.
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