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The theory of nonlinear dispersive equation has seen a spectacular
development in the last 35 years. These equations model phenomena of
wave propagation coming from physics and engineering. The areas that
give rise to these equations are water waves, optics, lasers, ferromag-
netism, general relativity, sigma models, nonlinear elasticity, and many
others. These equations also have connections to geometric flows and
to Kähler and Minkowski geometries.
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Examples of such equations are the generalized KdV equations (wa-
ter waves)

⇢
@tu � @3

xu + uk@xu = 0, x 2 R, t 2 R
u|t=0 = u0,

the nonlinear Schrödinger equations (optics, lasers, ferromagnetism)

⇢
i@tu +�u ± |u|p�1u = 0, x 2 RN , t 2 R
u|t=0 = u0,

and the nonlinear wave equation (sigma models, nonlinear elasticity,
general relativity)

⇢
@2
t u ��u ± |u|p�1u = 0, x 2 RN , t 2 R

u|t=0 = u0, @tu|t=0 = u1.
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The initial works studied the behavior of special solutions such as
solitons/traveling waves. Then, there was a systematic study of the local
well–posedness theory, using extensively tools from harmonic analysis.

The last 25 years have seen a lot of interest in the study of the long–
time behavior of solutions, for large data. Issues like blow–up, global
existence, scattering and long–time asymptotic behavior have come to
the forefront, especially in critical problems.
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We will concentrate the discussion on the energy critical wave equa-
tion in the focusing case (– sign above). In the defocusing case it was
shown (1990–2000) that all data in the energy space yield global solu-
tions which scatter.

The focusing case is very di↵erent, since one can have finite–time
blow–up, or solutions which exist for all time that do not scatter.
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The ultimate goal in this enterprise is to prove soliton resolution for
all solutions of the focusing energy critical wave equation which remain
bounded in the energy space.

I will describe the progress towards this, obtained in the last 10
years. The hope is that the results that we will describe will be a model
for what to strive for in the study of other nonlinear dispersive equations.
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Since the 1970’s there has been a widely held belief that “coher-
ent structures” describe the long–time asymptotic behavior of general
solutions to nonlinear hyperbolic/dispersive equations.

This belief has come to be known as the soliton resolution conjec-
ture.
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This is one of the grand challenges in partial di↵erential equations.
Loosely speaking, this conjecture says that the long–time evolution of a
general solution of most hyperbolic/dispersive equations, asymptotically
in time decouples into a sum of modulated solitons (traveling wave
solutions) and a free radiation term (linear solution) which disperses to
0.
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This is a beautiful, remarkable conjecture which postulates a “sim-
plification” of the very complicated dynamics into a superposition of
simple “nonlinear objects,” namely traveling waves solutions, and radi-
ation, a linear object.

Until recently, the only cases in which these asymptotics had been
proved was for integrable equations (which reduce the nonlinear problem
to a collection of linear ones) and in perturbative regimes.
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In 2012–13, Duyckaerts–K–Merle broke the impasse by establishing
the desired asymptotic decomposition for radial solutions of the energy
critical wave equation in 3 space dimensions, first for a well–chosen
sequence of times, and then for general times.
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This is the equation

⇢
@2
t u ��u � |u|4/(N�2)u = 0, (x , t) 2 RN ⇥ I

u|t=0 = u0 2 Ḣ1, @tu|t=0 = u1 2 L2,
(NLW)

N = 3, 4, 5, 6 . . . Here, I is an interval, 0 2 I .
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In this problem, small data yield global solutions which “scatter,”
while for large data, we have solutions u 2 C (I ; Ḣ1⇥L2), with a maximal
interval of existence (T�(u),T+(u)) and u 2 L2(N+1)/(N�2)(RN ⇥ I 0)
for each I 0 b I .

The energy norm is “critical” since for all � > 0, u�(x , t) :=
��(N�2)/2u(x/�, t/�) is also a solution and

k(u0,�, u1,�)kḢ1⇥L2 = k(u0, u1)kḢ1⇥L2 .
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The equation is focusing, the conserved energy is

E (u0, u1) =
1

2

Z
|ru0|2 + |u1|2dx � N � 2

2N

Z
|u0|2N/(N�2)dx .
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It is easy to construct solutions which blow–up in finite time say at
T = 1, by considering the ODE. For instance, when N = 3, u(x , t) =�
3
4

�1/4
(1 � t)�1/2 is a solution, and using finite speed of propaga-

tion it is then easy to construct solutions with T+ = 1, such that
limt"T+ k(u(t), @tu(t))kḢ1⇥L2 = 1. This is called type I blow–up.
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There exist also type II blow–up solutions, i.e. solutions for which
T+ < 1, and sup0<t<T+

k(u(t), @tu(t))kḢ1⇥L2 < 1. Here the break–
down occurs by “concentration.” The existence of such solutions is a
typical feature of energy critical problems.

The first example of such solutions (radial) were constructed for
N = 3 by Krieger–Schlag–Tataru (2009), then for N = 4 by Hillairet–
Raphael (2012), and recently by Jendrej (2015) for N = 5.
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For this equation one expects soliton resolution for type II solutions,
i.e. solutions such that sup0<t<T+

k(u(t), @tu(t))kḢ1⇥L2 < 1, where
T+ may be finite or infinite.

Some examples of type II solutions when T+ = 1 are: scattering
solutions, that is solutions such that T+ = 1, and 9(u+0 , u

+
1 ) 2 Ḣ1⇥L2,

such that

lim
t!1

��(u(t), @u(t))�
�
S(t)(u+0 , u

+
1 ), @tS(t)(u

+
0 , u

+
1 )
���

Ḣ1⇥L2
= 0,

where S(t)(u+0 , u
+
1 ) is the solution to the associated linear equation with

data (u+0 , u
+
1 ). For example, for (u0, u1) small in Ḣ1 ⇥ L2, we have a

scattering solution.
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Other examples of type II solutions of (NLW) with T+ = 1 are the
stationary solutions, that is the solutions Q 6= 0 of the elliptic equation

�Q + |Q|4/(N�2)Q = 0, Q 2 Ḣ1.

We say Q 2 ⌃.

Carlos Kenig The Energy Critical Wave Equation 17 / 37



For example,

W (x) =

✓
1 +

|x |2

N(N � 2)

◆�(N�2)/2

is such a solution. These stationary solutions do not scatter (if u scatters
then

R
|x |<1 |rx ,tu(x , t)|2dx ! 0 as t ! 1). W has several important

characterizations: up to sign and scaling it is the only radial, non–zero
solution. Up to translation and scaling it is also the only non–negative
solution.
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However, there is a continuum of variable sign, non–radial Q 2 ⌃
(Ding 1986, Del Pino–Musso–Pacard–Pistoia 2011, 2013). W also has a
variational characterization as the extremizer for the Sobolev embedding
kf kL2N/(N�2)  CNkrf kL2 . It is referred to as the “ground state.”
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In 2008, K–Merle established the following “ground state conjec-
ture” for (NLW). For u a solution of (NLW) with E (u0, u1) < E (W , 0),
the following dichotomy holds: if kru0k < krW k then T+ = 1,
T� = �1, and u scatters in both time directions, while if kru0k >
krW k, then T+ < 1 and T� > �1. The case kru0k = krW k
is vacuous because of variational considerations. The threshold case
E (u0, u1) = E (W , 0) was completely described by Duyckaerts–Merle
(2008) in an important work.
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The proof of the “ground state conjecture” was obtained through
the “concentration–compactness/rigidity theorem” method, introduced
by K–Merle for this purpose, which has since become the standard tool
to understand the global in time behavior of solutions, below the ground–
state threshold, for critical dispersive problems.
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Other non–scattering solutions, with T+ = 1, are the traveling
wave solutions. They are obtained as Lorentz transforms of Q 2 ⌃. Let
~̀ 2 RN , |~̀| < 1. Then,

Q~̀(x , t) = Q~̀(x � t~̀, 0)

= Q

0

@

2

4 �tq
1� |~̀|2

+
1

|~̀|2

0

@ 1q
1� |~̀|2

� 1

1

A ~̀ · x

3

5 ~̀+ x

1

A

is a traveling wave solution of (NLW).

These have been shown by Duyckaerts–K–Merle in 2014 to be the
only traveling wave solutions.
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When K–Merle introduced the “concentration–compactness/rigidity
theorem” method to study critical dispersive problems, the ultimate goal
was to establish the soliton resolution conjecture.

As I said earlier, for (NLW) one expects to have soliton resolution
for type II solutions. Thus, if u is a type II solution, one would want to
show that 9J 2 N [ {0}, Qj , j = 1, . . . , J, Qj 2 ⌃, ~̀j 2 RN , |~̀j | < 1,
1  j  J, such that, if tn " T+ (which may be finite or infinite), there

exist �j ,n > 0, xj ,n 2 RN , j = 1, . . . , J, with
�j,n

�j 0,n +
�j0,n
�j ,n +

|xj,n�xj0,n|
�j ,n !n

1 for j 6= j 0 (orthogonality of the parameters) and a linear solution
vL(x , t) (the radiation term) such that
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(u(tn), @tu(tn))

=
JX

j=1

0

@ 1

�(N�2)/2
j ,n

Q j
~̀
j

✓
x � xj ,n
�j ,n

, 0

◆
,

1

�N/2
j ,n

@tQ
j
~̀
j

✓
x � xj ,n
�j ,n

, 0

◆1

A

+ (vL(x , tn), @tvL(x , tn)) + on(1)

as n ! 1.
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This has been proven in the radial case, N = 3 (DKM 12’, 13’),
and in the general case until recently only when N = 3, 5, T+ < 1 and
u is “close” to W , (DKM 11’).

Let me discuss now the radial results. In DKM 12’, the decompo-
sition was proved for a well–chosen sequence of times {tn}n, while in
DKM 13’ it was proven for any sequence of times {tn}n.
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Let me first quickly describe the proof of the 13’ result. The key
new idea was the use of the “channel of energy” method introduced by
DKM, which was used to quantify the ejection of energy as we approach
the final time of existence T+.

The main new fact shown was that if u is a radial, type II, non–
scattering solution, 9r0 > 0, ⌘ > 0, and a small radial global solution
ũ, with u(r , t) = ũ(r , t), for r � r0 + |t|, t 2 Imax(u), such that 8t � 0
or 8t  0,

Z

|x |�|t|+r0

|rx ,t ũ(x , t)|2dx � ⌘.
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The key tool for proving this is what I like to call “outer energy lower
bounds,” which are valid for solutions of the linear wave equation. Let
N = 3, for r0 > 0, Pr0 =

�
(ar�1, 0) : a 2 R, r � r0

 
⇢ Ḣ1⇥L2(r � r0).

Let ⇡?
r0 be the orthogonal projection onto the orthogonal complement

of Pr0 .

Then: for v a radial solution of the linear wave equation, 8t � 0
or 8t  0, we have

Z

|x |�|t|+r0

|rx ,tv |2 �
1

2

���⇡?
r0 (v0, v1)

���
2

Ḣ1⇥L2(r�r0)
(DKM 09’). (1)
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In the non–radial case, we have for N = 3, 5, 7, . . . for v a solution
of the linear wave equation, 8t � 0 or 8t  0

Z

|x |�|t|
|rvx ,t |2dx � 1

2

Z
|rv0|2 + |v1|2dx (DKM 11’). (2)

When r0 = 0, the two inequalities coincide.

Carlos Kenig The Energy Critical Wave Equation 28 / 37



The argument in DKM 12 was di↵erent. It first showed that “self–
similar” blow–up is impossible: 80 < � < 1, (T+ = 1),

lim
t"1

Z

�(1�t)|x |t
|rx ,tu(x , t)|2dx = 0.

This was shown using (1). Combining this with “virial identities,” one
then shows that

lim
t"1

1

1� t

Z 1

t

Z

|x |<1�s
|@tu(s)|2dxds = 0,

which combined with a “Tauberian argument” and that the only static,
radial solution is W (up to scaling and sign) gives that all “blocks” are
scalings of ±W , and (2) finishes the proof.
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We next turn our attention to higher dimensions and the non–
radial case. Before doing so, let me mention that the techniques just
explained have found important applications to the study of equivariant
wave maps and to the defocusing energy critical wave equation with a
trapping potential, in works of Côte, Lawrie, Schlag, Liu, Jia, K, etc.

Now we should mention a fundamental fact, proved by Côte–K–
Schlag 13’: (1) and (2) fail for all even N, radial solutions. However, (2)
holds for N = 4, 8, 12, . . . for (v0, v1) = (v0, 0) and for N = 6, 10, 14, . . .
for (v0, v1) = (0, v1), but not necessarily otherwise.

Carlos Kenig The Energy Critical Wave Equation 30 / 37



Moreover, K–Lawrie–Liu–Schlag 14’ have shown that an analogue
of (1) holds for all odd N, u radial, and applied this to a stable soliton
resolution for exterior wave maps on R3.

In 14’, Casey Rodriguez used this analogue of (1) for all odd N to
prove the radial case of soliton resolution along a well–chosen sequence
of times for (NLW) in all odd dimensions, following the argument in
DKM 12’. The even dimensional case presented new challenges, because
of the failure of (1), (2). They were overcome, when N = 4, by Côte–
K–Lawrie–Schlag, using an analogy with wave maps, and by Jia–K (N =
6, 8, . . .) who introduced a new method, bypassing (1), (2).
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I would like to conclude with some recent results in the non–radial
setting for all (even and odd) dimensions. In the summer of 2015, Hao
Jia was able to extend an analogy with wave maps to the non–radial
setting and thus control the flux, when T+ < 1, i.e. the type II blow–up
case. This built on earlier work of Côte–Lawrie–K–Schlag and Jia–K.

This allowed him to obtain a Morawetz type identity (adapted from
the wave maps one), to find a well–chosen sequence of times tn ! T+ <
1, so that the desired decomposition holds in the non–radial case when
T+ < 1, with an error tending to 0 in the dispersive sense.
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In the case T+ = 1, one new di�culty is the extraction of the
linear radiation term. This has been done recently by DKM 16’ (arXiv).
Moreover, very recently, in the joint work of D–Jia–K–M 16’ (arXiv) we
have obtained the soliton resolution for a well–chosen sequence of times,
for general type II solutions, both in the case T+ < 1 and T+ = 1.
The result is:
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Theorem (DJKM 16’)

Let u be a solution of (NLW) with sup0<t<T+
k~u(t)kḢ1⇥L2 < 1.

(i) T+ < 1. Let S be the set of singular points. Fix x⇤ 2 S . Then 9J⇤ 2 N,
J⇤ � 1, and r⇤ > 0, (v0, v1) 2 Ḣ1 ⇥ L2, a time sequence tn ! T+

(well–chosen), scales �j
n, 0 < �j

n ⌧ T+ � tn, positions c
j
n 2 R3,

c jn 2 B�(T+�tn)(x⇤), � 2 [0, 1) with ~̀
j = limn

cjn
T+�tn

well defined, |~̀j |  � and

traveling waves Q j
~̀
j
, 1  j  J⇤ such that , inside Br⇤(x⇤) we have

~u(tn) = (v0, v1)

+
J⇤X

j=1

⇣
(�j

n)
�1/2Q j

~̀
j

⇣x � c jn

�j
n

, 0
⌘
, (�j

n)
�3/2@tQ

j
~̀
j

⇣x � c jn

�j
n

, 0
⌘⌘

+ oḢ1⇥L2(1) as n ! 1,

in Ḣ1 ⇥ L2 as n ! 1. Moreover, �j
n/�

j0

n + �j0

n /�
j
n + |c jn � c j

0

n |/�j
n !n 1,

j 6= j 0.
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Theorem (DJKM 16’ Contd.)

(ii) T+ = 1. 9!vL solving the linear wave equation such that

lim
t!1

Z

|x|�t�A

|rx,t(u � vL)(x , t)|2dx = 0, 8A � 0.

Also there exists J⇤ 2 N, 0  J⇤ < 1, a time sequence tn " 1 (well–chosen)
and for 1  j  J⇤ scales �j

n with 0 < �j
n ⌧ tn, positions c

j
n 2 B�tn(0),

� 2 [0, 1) with limn
cjn
tn

= ~̀
j well defined, |~̀j |  � and traveling waves Q j

~̀
j

such that

~u(tn) = ~vL(tn)

+
J⇤X

j=1

⇣
(�j

n)
�1/2Q j

~̀
j

⇣x � c jn

�j
n

, 0
⌘
, (�j

n)
�3/2@tQ

j
~̀
j

⇣x � c jn

�j
n

, 0
⌘⌘

+ oḢ1⇥L2(1) as n ! 1,

in Ḣ1 ⇥ L2 as n ! 1. Moreover, �j
n/�

j0

n + �j0

n /�
j
n + |c jn � c j

0

n |/�j
n !n 1,

j 6= j 0.
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The passage to arbitrary time sequences seems to require substan-
tially di↵erent arguments.
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Thank you for your attention.
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