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INTRODUCTION

The preparation for the Semicentennial of an address on the applica-
tions of mathematics has involved a difficult decision. Applied mathe-
matics is so vast a subject that anything in the nature of a general review
was quite out of the question. It seemed wiser to take some comparatively
small field, already well formulated mathematically but offering problems
still unsolved, and present it with some degree of completeness. Further-
more, it seemed best to take a subject belonging definitely to applied
mathematics, that is, a subject in which any results we can obtain are of
interest not only to the mathematician but also to the physicist and the
engineer.

Hydrodynamical stability is such a subject. It is concerned with the
initial stage of turbulence—its generation from steady flow—but not with
turbulent motion, once established. It presents mathematical problems of
no small difficulty: triumphs are few and disappointments many. Had a
greater fraction of the mathematical energy of the last half-century been
directed to these problems, no doubt our present knowledge of the be-
havior of fluids would be much greater. It is not too late to recommend
these problems to the attention of mathematicians, especially those who
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derive satisfaction from the thought that their work binds them to a
wider brotherhood of scientists.

It is not enough to present these problems in their final reduced form.
It is essential that the background should be swiftly surveyed. There are
three stages in any theory in applied mathematics: (i) creation of a mathe-
matical model, or, equivalently, the formulation of axioms or laws; (ii)
mathematical deduction of the behavior of the model; (iii) comparison
of these deductions with observation. It is with the second stage that the
mathematician is mainly concerned. But he must never lose sight of the
other stages. He must always be ready to offer a modification of the
fundamental laws if his deductions fail to fit observation. Hence, we must
cast a critical glance over the fundamental equations of hydrodynamics in
order to appreciate how far they involve fundamental mechanical laws
(not to be lightly tampered with) and how far they involve convenient, but
not inevitable, assumptions. The necessity for this survey and the desir-
ability of having at hand the essential formulas in convenient notation
will explain why so much space is devoted to these matters before coming
to grips with the actual problems of stability.

The formulation of adequate axioms for the motion of a viscous fluid
exercised the minds of Newton, D’Alembert, and Euler, but it was not un-
til about a century ago that Navier and Stokes developed a successful
mathematical médel of a fluid. The reader may refer to an interesting ac-
count of the history of hydrodynamics by R. Giacomelli and E. Pistolesi
[1, vol. 1, pp. 305-394]. There can never be a last word in regard to the
axioms of any physical theory. All we can ask of them is that they lead to
conclusions in agreement with observation. Sooner or later more refined
observations will find the weak point in any set of physical axioms. Nature
is far too complicated to be completely described in a few equations. But
we may pertinently ask this question: Do the Navier-Stokes equations
lead to deductions in obvious discord with observation? It might seem that
this is an easy question to answer: actually it is difficult, and the fault
lies with the mathematician rather than with the experimental physicist.
Only in a few cases has the mathematician been able to make deductions
from the Navier-Stokes equations. Cn account of the weakness of the
methods available, the mathematician has tended to simplify the question
of stability unduly, concentrating much attention on problems which do
not admit a direct physical check. But on the whole we may say that the
equations of Navier and Stokes have stood the test so far, their conspicu-
ous triumph being in the work of G. I. Taylor [2] (see §8 below). Cn the
other hand the work of R. von Mises [3, 4] and L. Hopf [5] (see §11 be-
low) may make us doubtful as to the validity of these equations. Every
investigation on hydrodynamical stability has a tang of excitement: the
result obtained may confirm or undermine a theory now a century old.

The present address does not cover all the attacks that have been made
on the problem of hydrodynamical stability : a more complete bibliography
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has been given by H. Bateman [6], and reference may also be made to a
paper by F. Noether [31]. The aim has been rather to give a general con-
spectus of the subject with the maximum simplicity of presentation, and to
direct attention to the discussion of disturbances more general than those
usually treated. The rather weak but general and simple conditions for
stability contained in §§6, 9, and 11 are believed to be new, and thé es-
sential connection between the methods of Part III and those of Part II
does not seem to have been previously pointed out.

PArRT I. THE PHYSICAL PROBLEM AND ITS MATHEMATICAL FORMULATION

1. The observation of instability. An historical account of experi-
mental work on hydrodynamical stability has been given by L. Schiller
[7]. Only some outstanding facts will be cited here. Couette motion is a
steady motion with circular stream-lines of a fluid occupying the region
between two rotating coaxial cylinders; Poiseuille motion is a steady mo-
tion with straight stream-lines through a fixed straight tube.* In each of
these cases the steady motion is easily determined mathematically, and,
under certain circumstances, there is good agreement between theory and
observation. But under other circumstances the simple motion predicted
theoretically is not observed at all or disappears on the slightest disturb-
ance. This we explain by saying that such a motion, although possible, is
unstable.

The stability of Couette motion has been investigated experimentally
by G. I. Taylor [2] and J. W. Lewis [8]. It is found that, corresponding
to any given speed of the outer cylinder, there is stability if the speed of
the inner cylinder is small enough. When the speed of the inner cylinder is
increased to a certain critical value, depending on the radii of the cylin-
ders, the speed of the outer cylinder, the relative senses of rotation of the
cylinders, and the kinematical viscosity of the fluid, the simple steady
motion is replaced by an arrangement of annular vortices. On further in-
crease of the speed of the inner cylinder, the motion becomes irregularly
turbulent. Apparently the appearance of the vortices represents the in-
cidence of instability: it is of some theoretical interest that the first step
towards instability is the setting-up of a new steady motion. The critical
speeds are shown graphically by Taylor and Lewis, the experimental re-
sults being in remarkable agreement with Taylor’s mathematical work (see
§8 below).

As regards Foiseuille motion, we shall refer here only to flow through a
tube of circular section and make the briefest possible statement. Stability
is found experimentally to depend on the value of the dimensionless Rey-
nolds numbert

* These definitions are more general than those sometimes employed.
t Care must be taken in examining results to see what definition of R is employed. Other
definitions, differing by constant numerical factors, may be used.
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(1.1) R = U.D/»,

where U, is the mean velocity, D the diameter of the tube, and » the
kinematical viscosity. It is found [6, p. 336; 1, vol. 3, p. 178] that there is
stability if R <R, and instability if R >R, where R, is the critical Rey-
nolds number: its value is

(1.2) R, = 2320.

On account of the mathematical difficulties involved in the theoretical
treatment of the above problems, much attention has been devoted to the
discussion of analogous plane problems (§11). Suitable experiments cannot
be performed to test mathematical conclusions in these cases, but the
problems are of mathematical interest and may be expected to throw light,
by analogy, on the more complicated problems.

2. Equations of motion of a viscous fluid. Indicial notation will be
used, in which Latin suffixes will have the range 1, 2, 3 and Greek suffixes
the range 1, 2, with the usual summation convention for repeated suffixes.

For any continuous medium, let x; be rectangular cartesian codrdi-
nates, ¢ the time, p the density, #; the components of velocity, X, the com-
ponents of body-force per unit mass, and E;; the stress-tensor (E;;=E.;).
According to the eulerian plan, x; and ¢ are the independent variables and
the other quantities functions of them.

Application of Newton’s laws of motion gives, as the equations of motion
of any continuous medium,

au,- Gu.; ) E)E,-,-
2.1) o+ o) = X 20
0x; J

X

with these is associated the equation of continuity
(2.2) % ) = 0
. _ ——— pu =
ot 0x; '

(or equation of conservation of mass).

To complete the system of equations, a connection must be set up be-
tween the stress and the motion. To this end the rate-of-deformation tensor
is defined as

(23) eij = %(au,/axz + 6ui/6xj),
and the pressure p is defined as the invariant
(2.4) p=— Ekk/S.

In a perfect or inviscid fluid the stress across any plane is normal, from
which it follows that in a perfect fluid

(2.5) Eij+ péij =0
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where 6;; is the Kronecker delta,
(26) 5,,=11f1=], 5”=01f1,;£]

As stress-deformation hypothesis for a viscous fluid, we assume that the
quantities E;;+pd;; are linear homogeneous functions of the quantities
e:j, or, formally,

2.7 Eij + poi; = pijrierr,

where u;ji; are the components of the wviscosity-tensor, satisfying the sym-
metry conditions

(2.8) Hijkl = Mjikl = Mijlk-

We shall assume that the fluid is 7sofropic: then u;;i; is an isotropic tensor,
and hence [9, p. 70]

(2.9) wiskr = Noibrs + u(Budj + 61641),
where \, u are invariants. Then (2.7) reads
(2.10) E;j + pdi; = N6i; + 2peij,

where 6 = ¢, =0u;/9x,, the expansion of the fluid. Contracting (2.10) with
j=1 and using (2.4), we find 3\ +2u =0, and we have from (2.10) as stress-
deformation relation in an isotropic fluid [10, p. 574]

(2 11) Ei,' = — PB,;]‘ - 2#951'7'/3 + 2;1.6“';

p is the coefficient of viscosity. We shall regard p as a constant, although
actually it depends on temperature.

The daring simplicity of (2.7)—its linear character—should be noticed.
In a similar situation in the theory of elasticity, it is admitted that the
linear stress-strain relation (generalized Hooke’s law) is physically valid
only for small deformations.

Substituting from (2.11) in (2.1) and associating (2.2), we have as
equations of motion of an isolropic viscous fluid (10, p. 577

au.- Gui 1 6{: v a6

+oug— = Xi—— — + — — + vdu,,
at axj P axi 3 axi

(2.12)
® 4 (pu) = 0
=+ — (pu;) =0,
o ox,
where v is the kinematical viscosity (v=u/p) and A is the Laplacian operator
(A =0%/9x,0x;).
We have in (2.12) four equations for five unknowns, p, %, , the body-
force X; being supposed assigned. Another equation, such as a relation
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between p and p, is necessary to make the problem of the motion of a fluid
mathematically definite. We shall assume the fluid komogeneous and wn-
compressible, so that p is a constant. We have then for the four unknowns
u;, p the four Navier-Stokes equations of motion of an isotropic homogeneous
incompressitle fluid [10, p. 577

ou; ou; 1 ap ou;

St = X — — =o.

2.13
( ) axj P 6)0,; ax,'

These are the basic equations to be employed in the discussion of
hydrodynamical stability. They have been derived in the above manner in
order to show the various hypotheses underlying them. Each simplifying
hypothesis represents a possible source of discrepancy between the model
fluid and the physical fluid. Indeed, L. V. King [11] has suggested that
compressibility may be of importance in the discussion of stability: in
that case we should use (2.12) instead of (2.13). We shall, however, follow
the usual course and use (2.13).

The boundary conditions to be associated with the equations of motion
in any form are as follows. Across a surface separating two fluids or a fluid
and a solid, the three components of velocity* and the three components of
stress across the surface of separation are continuous. In symbols, u; and
E;m; are continuous, #; being the direction cosines of the normal to the
surface.

As we shall deal only with a single fluid bounded by rigid walls, in
which the stress may be supposed adjusted to satisfy the condition of con-
tinuity, we shall be concerned only with continuity of velocity.

The equations (2.13) are given for rectangular cartesian codrdinates.
To pass systematically to any curvilinear coordinates, we may use the
methods of tensor calculus [13, chap. 20]. Thus, if the codrdinates are x*
and the line element

ds? = gidxidai,
the Navier-Stokes equations (2.13) read

1

1
+ uDut = X' — —Dp +vD'Du*, Du’ = 0,

2.14
(2.14) Y )

where ui=dx/dt, X* are the contravariant components of body-force, D;
the operation of covariant differentiation, and Di=gD;.

The only curvilinear coérdinates we shall require are the cylindrical
coordinates 7, ¢, z, and for them the equations of motion are most easily
obtained by the use of complex variables [14, p. 371]. Let %, v, w be the
components of velocity in the directions of the parametric lines of 7, ¢, 2

* Thus we exclude the possibility of a fluid slipping on a solid boundary; cf. Brillouin [12,
vol. 1, pp. 42 ff.].



HYDRODYNAMICAL STABILITY 233

respectively and R, ®, Z the components of body-force in these directions.
Then with

X1 = 7 COS ¢, %o = r sin ¢, X3 = g,
we have
uy + iuy = e?(u + i), Uy = W,
X1+ iX; = e (R + 19), X =2,
(2.15) ' ? ( ,) ?
i} ) Y& i 9 d 9
_.__+1——=edﬂ<——+————->’ _— = y
dx 0%xs ar r d¢ 0x3 9z

and we obtain at once from (2.13) the Navier-Stokes equations in cylindri-
cal coordinates

) ) ) . 1/9p 1 9p ) ) .
e*‘“D,{e"”(u + w)} =R+ 1d — —<— + — —> + ve—"”A{e"”(u + w)} ,
p \or r 0¢
Dw =2 ! 6p+ A

(2.16) @ p oz
1 0 1 v Jw

=W+~ —+— =0
r Or r 9d¢ 9z

here D,=09/dt+u,0/9x;, the operator of differentiation following the fluid,
so that

) )
(2.17) Di=—+4u—+——+w—,

and A is the Laplacian operator
92 1 9 1 92 0?

2.18 A=—
( ) Jr? + r 6r+ r? d¢? + 922

A motion will be said to possess rotational symmetry if the body-forces
possess a potential IT independent of ¢, and if %, v, w, p are independent of
¢. The last of (2.16) then gives

0 9
(2.19) — (ru) + — (rw) = 0,
ar 0z
so that a function ¥(r, 2, £) exists such that
1 9 1 9
(2.20) u=———()), w=— —(r)).
r 0z r Or

We shall refer to ¢ as a stream-function. For the body-forces we have
R = — 9Il/dr, ® =0, Z = — 011/oz,
and IT+p/p may be eliminated from the first two of (2.16)—actually three
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real equations—to yield the equations of motion in the case of rotational sym-
metry

Il

U 2v 99
(a———»@)@w— — =0,
r

r 0z
(2.21)
u
(D, + — — V@)‘l) =0,
r
where
D + 0 n 0
= — —— w____
‘T g ar | oz
(2.22)
1 0?2 1 0 a2 1
OP=A——=—4+— — 4 — — —
r? or? r Or 032 r?

Axial symmetry is a particular case of rotational symmetry, with the
additional condition v=0, so that the velocity-vectors intersect the z-axis.
In this case we have only one equation,

(2.23) (D, — u/r — vO)OY = 0.
In plane or two-dimensional motion, in which a plane x; = const. is taken
as the plane of motion, the Navier-Stokes equations (2.13) take the form
Oty 01ty 1 dp
(2.24) Py + w3 5;= Xa_;?va_{—m,”a’
dug/dxg = 0, A" = 9%2/dxgd g,

where u,, p, X. are functions of xy, xs, t. (We recall that Creek suffixes
have the range 1, 2.) The equation of continuity implies the existence of a
stream-function ¥ such that

(2.25) U = — /0, Uy = OY/dxy;
the vorticity is
(2.26) £ = 3(01y/0x1 — u1/dxe) = 2A%Y.

Assuming the body-forces conservative, we eliminate them and p from
(2.24), obtaining as the single Navier-Stokes equation for plane motion,

(2.27) DAY = vA'AY,
where

a a a a d a a
(2.28) Di=— 4 uy — _——¢A+—i~—;

ct .y h at dxy dx dx; Oxe

or, equivalently,
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(2.29) D = w0t

3. Some steady motions and their first-order equations of disturbance.
A steady motion is one in which velocity and pressure are functions of posi-
tion only. Thus a steady motion u,=U;(x;), p=P(x;) must satisfy (2.13)
in the form

AU, 1 oP aU;
(3.1) Ui—— = Xi— — — + AU, =0,
dx; p Ox; dx;

together with the boundary conditions. To study small disturbances of the
steady motion, we seek solutions of (2.13) of the form

(3.2) wy=U;+eu! +eu 4+ -, p=P+e' +ep"+ -+,

where € is a constant parameter and »/, »!’, - - -, p’, p’’, - - - are func-
tions of position and time. We demand that (3.2) shall satlsfy (2.13) and
the boundary conditions for all values of € in a range 0 <e <e;. Formal sub-
stitution of (3.2) in (2.13) gives a sequence of sets of equations, each set
corresponding to a definite power of ¢ and having boundary conditions
associated with it. The set corresponding to € is (3.1); the set correspond-
ing to € is
ou! ou! oU; 1 ap ou}

(3.3) — 4+ U;j— + u] = — — — + vAu/, =0,
ot dx; dx; p 0x; dx;

with the boundary conditions #;/ =0 on any rigid wall, fixed or moving in
a prescribed manner, which bounds the fluid. The equations (3.3) may be
called the first-order equations of disturbance.

A complete treatment would require consideration not only of (3.3),
but also of the equations corresponding to higher powers of €, together
with establishment of the convergence of (3.2) and justification of the
term-by-term differentiations. It is customary, however, to confine atten-
tion to the first-order equations, which, it is reasonable to suppose, deter-
mine the behavior of disturbances initially very small. The discussion of
these equations is certainly a necessary preliminary to a more complete
discussion.

We shall now discuss some familiar steady motions and their first-
order equations of disturbance. Body-forces are assumed absent through-
out.

(a) Couette motion. Let fluid occupy the region between two coaxial
circular cylinders of radii a,, a2, (a1 <a.), which are rotating with constant
angular velocities 7, 7, about their common axis. Using cylindrical co-
ordinates 7, ¢, z in which the cylinders are r=a, and r=a., we see that
(2.16) and the boundary conditions are satisfied by

(3.4) u =0, v=1, w =0, p =P,
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where
V = Ar + B/r, P = pj V¥/r)ar.
(3'5) N0 — M1073 afad (”2 - n1)
A=—"—"—"7) B=— —uouw«-——.
at — a? af — ap

This is Couette motion. We note that the y of (2.20) is zero.
For a general disturbance of the Couette motion, we write

u=ceu + -, v=V4+e + - -,
w:ew'+...’ p=P+eP,+...,
and obtain from (2.16) the first-order equations of disturbance. We shall
not write them here, as we find it more convenient in §6 to appeal directly
to (3.3) when the disturbance is general.

For a disturbance possessing rotational symmetry we may use (2.21),
substituting

(3.6)

Y 1 9
BNy=e«/+-,0=V+ea+ -, u=—— w=——(y).
0z r Or

Hence we obtain the first-order equations of disturbance

Il

] 9’
<— — u@) |y’ — 2(A + B/r?) —,
at dz

3 oy
(38) <——J"‘ v = 24 )
ot 0z
1 0? 1 4 0? 1
O=A— — = — f — — -
r? or? r or 93’ r?
with the boundary conditions
W
3.9) —=—()=v =0 for r=a andfor r» = a,.
9 or

(b) Poiseuille motion. Let fluid fill a fixed cylindrical tube of arbitrary
section, the axis of x; being parallel to the generators. Let C be the boundary
of the normal section. We see that (2.13) and the boundary conditions are
satisfied by

(3.10) te = 0, uy = Us, p=P,
where
(3.11) Us = 348, P = — pdxs+ B,

A and B being any constants, and & a function of #;, x, satisfying
(312) A"I’ = — ?., A= 62/6x56x5,
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with the boundary condition ®=0 on C.* This is Poiseuille motion.
For a disturbance of the steady motion, we write

(3.13) o=euqd +---, ua=Us+teus +---, p=P+ep'+ -+,

and obtain from (3.3) the first-order equations of disturbance

du! + ou! bl aU; 1 ap + vau?

— i3, = — — — 4 vAu!
(3.14) at Yoxs 7 oxg o 0 ’

814,-’/695,- = 0, A = 32/63\7,'6.%‘]',

with the boundary conditions #;/ =0 on C.

For the more familiar Poiseuille motion, in which C is a circle, it is con-
venient to use cylindrical cosrdinates 7, ¢, 2, the equation of the cylinder
being »=a. Then (2.16) and the boundary conditions are satisfied by the
steady motion

(3.15) u=19=0, w=W, p =P,
where
(3.16) W = Wl — r?/a?), P = — 4uWez/a* + const.,

W, being a constant, the velocity at the center of the tube. We note that
the stream-function ¢ of (2.20) is ¢ =¥ where

(3.17) ¥ = aWo(3r/a — 3r3/a%).

On account of the singularity in the coérdinate system for =0, cylin-
drical codrdinates do not seem particularly useful for the discussion of
general disturbances. For disturbances with rotational symmetry in a tube
of circular section, we substitute in (2.21)

y=Vv+e +- -, v=e' 4+ -,
u = — 0y/0z, w = (1/r)o(ry)/dr,

and obtain the first-order equations of disturbance

(3.18)

Il

) 0
<~+ W — —v@>®¢' =0,

at dz
d a
(3.19) <—+W——u® v =0,
at dz
1 a2 1 9 02 1
P=A--—=—4+——4—-—,
r? dr? r Or 022 r?

* The problem of finding ® is identical with the problem of finding the irrotational motion
of a perfect fluid inside a rotating cylinder and with the torsion problem for an elastic cylinder.
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with the boundary conditions

LA A
— =) =9 = or r=a,
(3.20) 9z ar
. o
—5—=¢’=v’=0 for r=0.
2

For disturbances with axial symmetry, we put =0 and obtain the single
first-order equation of disturbance

ad 0

(3.21) <E)t + W Py v@) Oy o,
O being as in (3.19) and the boundary conditions being as in (3.20).

(c) Plane Couette motion and plane Poiseuille motion. Let fluid fill
the region between the parallel planes x. = + /.

Let these planes have constant velocities Uy, — Uy, respectively, in the
direction of the x;-axis. The equation of motion (2.27) and the boundary
conditions are satisfied by the steady motion ¢ =¥ where

(3.22) ¥ = — YU /h.

This is plane Couette motion, or simple shearing motion. We shall refer to
it as P.C.M.

Now let the planes x. = =+ % be fixed. The equation of motion (2.27) and
the boundary conditions are satisfied by the steady motion Y =¥ where

(3.23) v = Ugh(%xgs/hs - xg/h),

where U, is a constant, the velocity at the center of the channel. This is
plane Poiseuille motion, or pressure-flow. We shall refer to it as P.P.M.
Confining our attention to disturbances in the plane of the motion

(x3=const.), we write, for the disturbance of any plane steady motion
y=1Y,

(3.24) Y=Vt +- -,
and obtain from (2.27) the first-order equation of disturbance
NI, SRV, L BV
ot 0%y 0% 0x; 0%xs
(3.25)
' 9 ' 9
— L AT+ — A = pAAYY

0xy 9%y 0x1 0,

We substitute from (3.22) and (3.23) in (3.25), at the same time introduc-
ing the dimensionless variables

(3.26) x = x1/k, y = %/ h, T = vt/ h?,
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and the Reynolds number, defined as

(3.27) R = Uh/v.
Thus we obtain the first-order equations of disturbance
d d
(3.28) <— + Ry—) AY = AAY, P.C.M.,
or ox
] ] oy
(3.29) <—+R(1 — 9?) —) AY + 2R — =AY/, P.P.M.,
or ox ox
where
(3.30) = 90%/9x? 4+ 92/9y?,

and the boundary conditions for both cases are
(3.31) W /ox =Y /dy =0 for y= £ 1.

4. Formulation of the problem of stability. In the case of a dynamical
system with a finite number of degrees of freedom, a definition of stability
of equilibrium or of steady motion is comparatively easy to give, because
the motion is determined by the initial conditions—initial position and
velocity. But in the case of a continuous medium, the determination of the
motion requires a knowledge not only of the conditions at =0, but also
the boundary conditions for ¢#>0. Some of these boundary conditions,
namely, the velocity on fixed or moving walls, are assigned in the hydro-
dynamical problem. The rest of the boundary consists, in the physical
problem, of those parts of the apparatus which the physicist does his best
to render unimportant, namely, the ends of the cylinders in Couette motion
and the ends of the tube in Poiseuille motion. In the mathematical prob-
lem we can do what the experimentalist cannot do—remove the ends to
infinity. But that does not absolve us from considering boundary condi-
tions at infinity; some such conditions must be furnished if the problem
of fluid motion is to be definite.

It has been an almost universal custom to circumvent this difficulty of
boundary conditions at infinity by limiting the discussion to disturbances
which are spatially periodic in the direction in which the fluid extends to
infinity, thus giving to the problem the required definite character.
Strangely enough, this periodicity, introduced as a mathematical con-
venience, has apparently a physical reality, as shown in the experiments of
Taylor [2] and Lewis [8].

The following is offered as a definition of hydrodynamical stability. Let
R be a region occupied by a fluid in steady motion, specified by U,, P,
satisfying (3.1). Consider now the equations (3.3) to be satisfied by #/, p’.
With these equations we associate (i) initial conditions 7 for ¢=0, (ii)
boundary conditions B for £=0. In B we include the condition of spatial
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periodicity in the infinite direction, and write the condition B(\), where X
is a parameter specifying the wave-length. (In the case of three-dimen-
sional disturbances of plane Couette and Poiseuille motions,we would have
two such parameters.) The conditions I are to be consistent with B for
t=0 and with (3.3).

If all solutions u/ of (3.3), satisfying I and B()), are bounded for ¢>0,
we say that the steady motion is “stable 7, B(\)”; but if there exists any
solution #; of (3.3), satisfying I and B(\) and unbounded for >0, we say
that the steady motion is “unstable” (absolutely). If we so far weaken the
conditions 7 that they demand nothing more than consistency with B(\)
and (3.3) for £=0, and the continuity of the initial values of /, p’, du! /dx;,
then stability may be discussed with reference to B(\) alone. If all such
solutions #/ of (3.3), satisfying B(\), are bounded for ¢ >0, we say that
the motion is “stable B(\),” and if this holds for arbitrary \, we say that
the motion is “stable” (absolutely).

It is not claimed that the word “stable” is used below with quite as
precise a meaning as that given above. Our knowledge is so scanty that
there has been a natural tendency to concentrate on what appear to be the
most important aspects of the stability problem. Thus for simplicity of ex-
pression, we shall in Part II refer to a motion as stable if there is no char-
acteristic value with positive real part, not seeking to generalize or criti-
cally examine the expansion theorem of Haupt [15].

In Part III we shall be concerned with “stability in the mean,” as there
explained.

Part II. THE METHOD OF THE EXPONENTIAL TIME-FACTOR

5. Introductory remarks. The method of the exponential time-factor
(also called the method of small oscillations) has long been a classical
method for the determination of the periods of vibration of continuous
systems. It was applied to the problem of hydrodynamical stability (for
inviscid liquids) as long ago as 1880 by Rayleigh [16]. In this method we
seek solutions of the first-order equations of disturbance (3.3) of the form

(5.1) u{ = e"F(x1, %q, ¥3), P = e”'G(x1, %2, %3),

the constant ¢ and the functions F;, G being in general complex. Real
velocity and pressure are found by adding to these expressions their com-
plex conjugates. On introducing the spatial periodicity mentioned in §4,
the differential system is homogeneous and inconsistent unless ¢ takes cer-
tain characteristic values. If the real parts of all the characteristic values
of o are zero or negative, then there is stability for disturbances for which
initially #/ =F,, p' =G, but if there is any characteristic value of ¢ with a
positive real part, therc is instability. Since F; are characteristic functions,
the initial conditions in question are somewhat special and in order to es-
tablish stability for arbitrary initial disturbances, it is necessary to discuss
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the expansion of arbitrary functions in terms of the characteristic functions
and the validity of applying to the expansions the required differential
operations. This question will not be discussed. We shall for simplicity refer
to a steady motion as “stable” if all the characteristic values of ¢ have zero
or negative real parts. As far as instability is concerned, no such question
is involved, and hence the method of the exponential time-factor is ideally
suited to the establishment of instability. Unfortunately, as we shall see,
the methods available are such as to establish conditions under which the
real parts of all characteristic values o are zero or negative much more
readily than conditions under which the real part of at least one ¢ is posi-
tive.

In Part IIT we shall discuss a different approach to the question of sta-
bility by the method of decreasing positive-definite integrals, this latter
type of stability being stability in the mean. The mathematical connection
between the two methods is closer than appears to have been realized. Cer-
tain arguments, actually developed by the methods of Part III, may also
be presented by the methods of Part II. We shall, for simplicity, treat such
arguments in Part IT and show in Part IIT how the two lines of argument
coalesce.

The method of Reynolds [17] will not be used. His mean values present
certain difficulties, and, while the theory of turbulence demands their use,
it would seem that first-order stability can be discussed as adequately and
more clearly without them.

6. Couette motion with general disturbance. Taking the axis of 3
along the axis of the cylinders, the Couette motion (3.4) may be written
u;=U,; where

(6.1) Us = — eaprs(4 + B/r?), U; =0, r? = X%,

where e, is the permutation symbol (e =€3,=0, e:5= —ex=1) and 4, B
are constants as in (3.5). Let us seek solutions of (3.3) of the form

(6.2) u{ = fi(x1, x5)erttrzs "= g(%y, xg)e”tHires,
’ ’ p 8 )

the functions f;, g and the constant ¢ being in general complex and the
constant \ real, taken positive without loss of generality. Substitution from
(6.2) in (3.3) and elimination of f; and g lead to the two partial differen-
tial equations for f,,

(2 ) (2 )
0Xq 0%q
42 (Uﬁ ifi + fs 6U,,> _ _6_ (Uﬂ ‘6_6;>,
axg 6xﬁ axa axg
where

(64) 0 = 6fg/6x,3 = - ’i)\fa, A = (32/31‘93175.

(6.3)
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The boundary conditions are
(6.5) fa=0=0 for r=a; andfor 7 = a,.

The consistency of (6.3) and (6.5) demands the satisfaction of a character-
istic equation by o, \, ».

We shall now establish conditions under which the Couette motion is
stable for general disturbances, in the sense that all characteristic values of
o have negative real parts. Let us multiply (6.3) by f.dS (the bar denoting
a complex conjugate and dS an element of area) and integrate over the
part of the plane x;=const. occupied by the fluid. On integration by parts,
this gives, by virtue of (6.5),

o(I# +NU2) = — y(I¢ + NP + NJ# + NI 2)

(66) _ )\Zf (Uﬂafa/axﬂ +f56U‘,/6x5)JTadS - ng(ab‘/axg)@dS,

where we have denoted certain positive-definite integrals as follows:

Ig = f fafadS, I# = f 84S,

6.7 -
Ofa Ofa a0 9o
J? = ——dS, I¢ =f aS
axg 6x5 Bxa axa
Let us write
(6.8) o = o1+ iog,

and add to (6.6) its complex conjugate. Since dUs/dxs =0, we have

f Up(fadfa/0%5 + fadfu/05)dS = — f (0Us/05)fufedS = 0,
6.9)

f Uﬂ(é@@/axg + 065/6%@)(15 = - f (aUg/axg)ggdS = 0,

and so we obtain
0’1([22 + )\2.[12)/1/ = — (132 + )\2122 '+‘ )\2]22 + )\4112>
(6.10) . } _
— 300/ [ @UL/ox) Fufs + 1704,
The last term may also be written

6:11) = 30/) [ Uasllufs + TS, Uus = HOU/0x0 + 0U./0%5),

U.s being in fact the rate-of-deformation tensor for the steady motion.
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We may note, in passing, the application of (6.10) to another problem.
Consider a cylinder of any section (simply or multiply connected) rotating
with constant angular velocity about an axis parallel to the generators.
We know that a rigid-body rotation of fluid contained in the cylinder is a
possible steady motion: this motion is given by (6.1) with B=0. For the
disturbance of this steady motion, (6.10) holds. But U,s=0 in a rigid-body
motion: hence o; <0 and the motion is stable for all values of » and \.

Returning to the case of Couette motion, we shall give certain inequali-
ties satisfied by complex functions f,, arbitrary save for the boundary con-
ditions (6.5), 8 being defined by (6.4). For any real constant x,

(6.12) f (Udb + xf)(Udd + xJ)dS = 0,

and hence
~ 1/2 B
(6.13) \ f Uolfad + Fu0)dS ’ < 211< UaU,,oﬁdS> < 20N,

where U is the maximum velocity in the steady motion: this maximum
occurs on one of the cylinders and hence U is equal to the greater of | ma:],
| n5a2| . Also, for any real constant x,

(6.14) [ Wefs + xofu/om0(.Js + xofuf02a5 2 0,
and hence
f Ua(f30fa/ 0% + f30fa/925)dS '

(6.15) 1/2
< 212( UaUafﬁfgds> < 2U14J,.

Now on integration by parts the final integral in (6.10) is

[ GUsoufi + 170as = = [ U0 + 1.0yas
(6.16)
— [ utsfsons + Fiaguowsyas,

and hence by virtue of the inequalities (6.13), (6.15) we deduce from (6.10)
the inequality
ai(I? + NI2) /v < \T/v) (I + Ja)

— (I + NUZ +\T2 + NI2).
Obviously o, <0 if I2+J¢ +N 2 —(U/W)I,(Is+7J5) is a positive-definite
form in the real variables I,, I3, Jo; a sufficient condition for this is

(6.18) U/ < 212,

(6.17)
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Hence we see that Couette motion is stable for a general disturbance of wave-
length I(=2m/\) if

(6.19) Ul/v < 2m(2)112,

where U is the greater of the two linear velocities of the cylinders. Thus any
given Couette motion is stable for disturbances of sufficiently short wave-
length.

Returning to (6.10) and writing the last term in the form (6.11), we
may develop another attack. Choosing temporary axes we can make
U,.=0 at a specified point in the fluid: then at that point (since Ug=0)

| Uas(Fafs + fafs) | = 2| Unfifs + Ussfofs|
< 2| Un| fofa = 2| D|**fufa,

where D =det. U,. But the final expression in (6.20) is invariant, and so
exceeds or is equal to the left-hand side for the original general axes. It is
easily seen from (6.1) that D= —B?/r* and so

(6.20)

(6.21)

f Ueas(fafs + fufs)dS ’ < 2[B|fr—2fafad5 < 2| Blai2.

Thus by (6.10)

(6.22) i(I2 + 2 2) /v < (| B /(a2 — (I + NI + )2 +MI2),
and hence ¢, <0 if

(6.23) | B| /(a2n\?) < 1.

Thus Couette motion is stable for a general disturbance of wave-length I if

]nz—nlllz 022

(6.24) < 4r2,

2

14 aq” — (112

The conditions (6.19) and (6.24) for stability are weak, but they have
appeared worth noting on account of the ease with which they are ob-
tained. Returning to (6.10) we may describe a method which has been
used to give a fairly wide range of stability when applied to simpler prob-
lems than the general disturbance of Couette motion.

Let us consider the functions f, arbitrary save for the boundary condi-
tions (6.5), and a normalizing condition 7;=1. It is evident that the right-
hand side of (6.10) has no finite lower bound, because we have only to
choose for f, rapidly oscillating functions to make the term — 75?> dominant.
But it is evident from (6.22) that the expression in question has a finite
upper bound. To find it, we apply the calculus of variations and see that
the functions f, providing this maximum satisfy the partial differential
equations

(6.25) (A" = N)(80/9xa — N*fa) + (\2/¥) Uasfs + Kfeu = 0O,
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where K is a constant; the maximum value in question is K. The boundary
conditions associated with (6.25) are (6.5). We have here a new character-
istic-value problem, namely, to find the characteristic values of K such
that (6.25) may be consistent with (6.5). If all these characteristic values
are negative, then the maximum of the right-hand side of (6.10) is nega-
tive, and hence o, <0.

Now it follows from the reasoning leading to (6.19) that if the motion
of the cylinders and \ are assigned, the right-hand side of (6.10) is negative
when v is large enough. Thus, for large v, all the characteristics K of (6.25)
are negative. If we decrease », instability cannot appear until the greatest
of the characteristics K passes through the value zero. Hence we may make
this statement: Couelte motion is stable for gemeral disturbances of wave-
length 2w/\ provided that v>vi(\), where vi(\) is the greatest characteristic
value of v making the equations

(6.26) (A" — A% (80/0xa — N2fa) + (N2/¥)Uasfs = 0

consistent with the boundary conditions (6.5).

7. Couette motion with plane disturbance. By a plane disturbance of
Couette motion, we mean a disturbance in which the velocity is paral-
lel to the plane x;=const. (in the notation of §6) and independent of xs.
This is not a particular case of that considered in §6, because the condition
of periodicity in x; is replaced by the condition of independence of x;.

Limitations of space permit only a brief survey of this problem. The
Couette motion (3.4) satisfies (2.27) with y =¥ where

(7.1) ¥ = 14,4+ Blogr.

Putting first ¢y =¥+e)'+ - - - and then (introducing the azimuthal
angle ¢)

(7.2) Y= fr)estte

where \ is an integer (positive without loss of generality), we obtain the
characteristic value problem for ¢ in the form

vLLf = (¢ + i\V/r)Lf,
(7.3) az 1 d 2\

= — —_———

dr? r dr r?
with the boundary conditions

(7.4) f=f =0 for r=a; andfor 7 = a,.
The accent here indicates d/dr and V is given by (3.5). Multiplying (7.3)

by rfdr, integrating from 7 = a, to r = a;, and adding the complex conjugate,
we get (with ¢ =0,+102)

o1 < f rf'f'dr 4+ N2 f r—lffdr> / v

7.5 7 fr—7
(7.5) = - f rLfLfdr — %ik f r 2 (ff" = ff)dr,
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where the range of integration is (ai, a2) and
(7.6) k = 2\B/v.

Considering, as in §6, the upper bound of the right-hand side of (7.5), for f
arbitrary save for (7.4) and a normalizing condition, we are led (as we were
led to (6.26)) to the statement that Couette motion is stable for plane dis-
turbances, characterized with respect to periodicity in ¢ by the positive integer
N, provided that k <ki(\), where ky(\) is the smallest characteristic value of k
making the equation

(/") = 2N+ DY)+ (N = 4N

(7.7 e,
— 3k () + Y} =0
consistert with (7.4).

Here, although derived in quite a different way, we have equation (19)
of K. Tamaki and W. J. Harrison [18]. Since (7.7) is homogeneous, it is
easy to get the general solution, but the subsequent calculations are intri-
cate and the reader must be referred for them to a later paper by Harrison
[19], where he found it possible to make use of the same type of argument
as that used previously by Orr [20] for plane Couette motion.

8. Couette motion with disturbance having rotational symmetry. We
proceed to discuss the one case where the method of the exponential time-
factor has been used successfully to predict instability. For a disturbance
with rotational symmetry, the first-order equations of disturbance of
Couette motion are as in (3.8). Let us introduce dimensionless variables
and constants as follows:

i =wt/at, Y =r/ay, 2 = z/ai,
(81) (X:ag/(11> 1, 6=”ﬂ2/7’b1, R=711012/V,
A= @D/ = 1), B == a8 D/~ 1);

we recall that ai, a, are the radii of the cylinders and #;, #, their angular
velocities, the subscript 1 referring to the inner cylinder. The constants
a, B, R may be called, respectively, the geomeirical ratio, the kinematical
ratio and the Reynolds number of the steady motion. Substitution of (8.1)
in (3.8) gives

5 v’
<_ - ®’> OY = — 2R(A" + B'/r'Ha, !
Py 9z’

a N/

(8.2) a (— — )¢ = 2RA’ —,
ot’ 07

0? 1 0 0?2 1

ar'r v 9 9z’ 7’2

o =

The range of " is 1 7' <« and the boundary conditions (3.9) are
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VR

(8.3) = (Y)=v=0 for ¥ =1 andfor 7 = a.
az' a9

We seek solutions of (8.2) of the form

(8.4) Vo= af(r)est' v = ig(r)et/tid’

where the functions f, g and the constant ¢ may be complex; the constant A
is real, and we may suppose it positive without loss of generality. The
actual stream-function and azimuthal velocity are to be found by adding
to (8.4) their complex conjugates. Substitution in (8.2) gives the two ordi-
nary differential equations

(L — N\ — o)(L — \O)f = — 2AR(4’ + B'/r'D)yg,
(L — N\ — ¢)g = — 2ARA'f,
@& 1 d 1

= — _— - —
ar't v dr’ 2

with the boundary conditions
(8.6) f=4df/dr =¢g=0 for ¥ =1 andfor ¢ = a.

The system (8.5), (8.6) will be consistent only if the constants , \, , 8, R
satisfy a characteristic equation; it is natural to regard this as an equation
for o, the other (real) constants being assigned.

We have in (8.5), (8.6) a somewhat simpler form of the characteristic
value problem than that given by G. I. Taylor [2]; the formal simplifica-
tion arises from the use of the stream-function ¥. We proceed to give a
modification of Taylor’s method of obtaining the characteristic equation.*

The Bessel functions J,(kr’), Y1(«xr') are independent solutions of

(8.7) (L + )e(') = 0.

Associating the boundary conditions ¢(1) =¢(a) =0, we have as the char-
acteristic values k., (n=1,2, - - - ), of the parameter « the roots of

(8.8) J1() Y 1(ka) — Vi(k)J1(ka) = 0;

(8.5)

the corresponding characteristic functions ¢, of (8.7) aref
(8'9) ¢n(r’) = Cn{Jl(Kn)Yl(Knr,) - Yl(Kn)Jl(Knr,)} y n = ly 2; Y

C. being a normalizing factor, chosen to make
(8.10) f 7' Pmbndr’ = Smn.
1

The constants «,, C, and the functions ¢, are calculable in terms of «.

* The analytical validity of the processes employed by Taylor has been discussed by Faxén
[21], who also proposed alternative treatments.
t The summation convention does not operate in §8.
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We assume the existence of solutions of (8.5), (8.6), expansible in series
of the above characteristic functions,

f= i butn, by, = f ar']}l)ndr',
(8.11) " '
g = i CaPns Cn = f c'r’gqﬁndr'.
Since " 1
(8.12) far’%Lgdr' = far’qusndr’ = — Kk f ar’g¢,,dr’ = — KiCn,
1 1 1

multiplication of the second of (8.5) by 7'¢.dr” and integration from 1 to «
gives

(8.13) Cn = 2ARA' (k2 + N2+ 0)71),.
We may expand the right-hand side of the first part of (8.5) in the form
(8.14) — DR(A' + B'/r'%)g = i‘, dutbn,
where "~
(8.15) to= = 2r{ e+ B [ ar};
1
by (8.13) we have
Am = — i D nbn,
1

(8.16)
Dy = 4)\2.R2A’{A’6m,. + B f (¢m¢,,/r’)dr'} (k2 + N2+ o)1,
1

If we substitute from (8.14) in the first of (8.5), multiply across by r'¢.dr’
and integrate from 1 to o, we get

d¢m a2« b
4 + (ke + A) (ka2 + N2+ O)bm = — O Db,

—
dr’  dr'?l,

(8.17) -—[

n=\

m=1,2,---.
Let us define
m = (Km2 + A2 + U)bm,

(8.18) Epn = Daa(kn? + N) 7 + 2+ 0)7,
D0 = (/A1 )r/ea,  PulV = (dpm/dr )1,
Then (8.17) may be written
(6 4 ND)=1D, D (Fd2f/dr'D) ey — (k2 + N1, (7 d2f /A1)

8.19 o0
(19 + 3 Gmn + Ennden = 0, mo=1,2,

n=1
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On account of the boundary conditions on f, the series for f in (8.11) may
be differentiated term-by-term, giving

(8.20) df/dr' = Y bde,/dr 127 £ a,
n=1
and the vanishing of df/dr’ at the ends of the range gives the two equations

(8.21) D (k2 + N4 o)1dMe, =0, D (ki + N+ o) 1D @e, = 0.

n=1 n=1

The infinite set of equations (8.19), (8.21), linear in the quantities

(r'd’f/dr'*), -1, (r'd*f/dr'?), —a, ey, €3, - -,
yields the characteristic equation
(8.22) F(a,\, o, 8, R) = 0,
where F is the infinite determinant
0 0 (K12 n N + o) 13,® (KZZ + % + o)1 - . -
0 0 (K12 + \ + o)1, (Kzz + X + o)1 - . -
(823) (K12 + )\2)_1<I>1(” (K12 + A2)71g, @ 1+ En Ei,

(k2 + A)71B,0 (kg2 4 A 2)71,® Eqy 1+ Ep

The next step should be the evaluation of the roots o of (8.22) corre-
sponding to assigned values of N\, «, 3, R. This would be almost impossibly
laborious, however, and we follow Taylor in adopting a less direct attack.
The work of §6 for a general disturbance is applicable in particular for a
disturbance with rotational symmetry. Translating (6.23) into present di-
mensionless notation, we know that the real parts of all roots o of (8.22)
are negative provided that

21
(8.24) R <\

o[- 1]

Let us hold A, «, B fixed and increase R. If instability appears, it will ap-
pear when R has such a value that (8.22) has a purely imaginary root. But
this consideration does not effectively reduce the task of computation, so
Taylor made the bold assumption that the roots o of (8.22) are real. Then
instability will appear when R passes through such a value that (8.22) has
a root ¢ =0. This critical value of R, marking the incidence of instability,
will be the smallest positive root R of

(8.25) F(0,\, &, B8, R) = 0.

Regarding «, 8 as assigned once for all, this critical value of R is a function
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of A, say R(\). The absolute critical value R, will be the minimum of R(\)
for arbitrary .

The task of solving (8.25) remains formidable, and Taylor found it
necessary to limit his calculations to the case where the difference between
the radii of the cylindersis small, that is, (a« — 1) small.* He was then able to
substitute trigonometric expressions for the Bessel functions, the value of
k. being approximately nm/(a—1). Even then the calculations are very
complicated. The results for particular values of « are exhibited graphi-
cally in Taylor’s paper. We may quote here in the present notation his
approximate expression for R, for the case where the cylinders rotate in
the same sense (3>0):

4 1
R: =T @+ (0.0571S + 0.000565-1)~1,
2 (a— 131 — Ba®)(1 — B)
(8.26) 48
= 0.652(a — 1).

The corresponding value of A (minimizing R(\)) is 7/(a—1), giving a
wave-length in the z-direction equal to twice the difference between the
radii of the cylinders. The formula (8.26) and the corresponding calcula-
tions for 3 <0 are in very good agreement with experiment.

9. Poiseuille motion in a tube of general section. A problem as gen-
eral as that of the stability of Poiseuille motion in a tube of arbitrary sec-
tion does not appear to have been treated previously. It is, however, quite
easy to establish some sufficient conditions for stability.

The steady motion is as in (3.11) and the first-order equations of dis-
turbance as in (3.14). We substitute

9.1) ] = fi(x1, o) HFhas, P = g(x1, xg)ectHiras

the functions f;, g and the constant o being in general complex and the con-
stant N\ real; we assume it positive without loss of generality. On elimina-
tion of g, we obtain the two partial differential equations for f,

ae_v>_ AL }\2>
a(a—x—a r) = v — )((—9;:— f.

(9.2)
+_)\{6< 6U> 06(] U(GO >\2f>}
! 0% g Jo Jdxg 0Xq 0% 4 il
where
(93) 0 = af{j/axg = — i)\f;;, A= 62/6xg6x3.

* Without introducing this restriction, one can prove stability if #,a3 >na? >0, or, equiva-
lently, 28> 1; cf. [40].
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We have written U instead of U, for simplicity in notation. The boundary
conditions are

(9.4) fa=60=0 on C,

C being the boundary of the section. The consistency of (9.2) and (9.4) de-
mands the satisfaction of a characteristic equation by ¢, \, ».

One may observe the similarity of (9.2) to the analogous equation (6.3)
for Couette motion. This suggests the application of similar methods. One
may, however, note that 7 does not appear explicitly in (6.3), whereas it
does appear in (9.2).

We shall now establish conditions under which the Poiseuille motion is
stable, in the sense that all characteristic values of ¢ have negative real
parts. Let us multiply (9.2) by f.dS and integrate over the section. On in-
tegration by parts this gives, by virtue of (9.4)

0(122 + )\2112) = - V(132 + )\2122 + )\2]22 + )\4112)
(9.5) . j _ _ -
+ Ml OU/0%4)fHdS — f UbAdS — \? Ufafads} ,

where we have used for certain positive-definite integrals the notation
(6.7). Putting

(9.6) o = o1+ ilog,

and adding to (9.5) its complex conjugate, we obtain
(I + NI2) /v = — (I + NI 4+ \T2 + MI?)

9.7

+ 310 [ GUjar (1 - Fas,

which may be compared with (6.10), the difference between the forms of
the last terms being noted.

With a view to establishing conditions under which the right-hand side
of (9.7) is negative for f, arbitrary save for the restriction (9.4), we shall
now establish some inequalities. We shall use x to denote an arbitrary real
number.

We have

(9.8) f(fa + ix00U/3%4) (fa — ixB0U /dx4)dS = 0,

and so

IIA

aU R oU oU _ 1/2
(9.9) f (fuf — F.6)dS 211( %7 08ds) < 2GLI,
(9xa axa Xa

where G is the maximum of the gradient of U,
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AU aU\?
(9.10) G=max< ) .

0%xq 0%y
By virtue of equations (3.11) and (3.12) this maximum is attained on the
boundary.

Also
0fa 3fs\ (0fa 3fs

9.11 f( + ><——+ >dsgo,
( ) d0xg X 0x4/ \9%g x 0%
or

fe 0fs Ofa O
9.12) J22+xf<f s + i f">d5+xw > 0.

0xg 0xy, 0% 0x4

e 8fs  Ofa afﬁ> f _ 99 a§>
= —)dSs = — — —)d
f<6xﬁ 0%q + 0xg 0%q <f 0xg s O0xg S

= 2f0§ds =212,

But

(9.13)

and hence (9.12) gives

(9.14) Jy = Is.
Also
9.15) f<6U0+ 60><6U§+ ag>d5>0
) axa Xaxa axa Xaxn -
or
oU oU _ aU a -
(9.16) f —— 00dS + xf 00)dS + x*# = 0.
0xq 0%y Yo 0%q
But by (3.11), (3.12)
aU o0 _ -
9.17) f 00)dS = — fA’U-BGdS = Al
0%y 0%y

A being the constant in (3.11), which we may assume positive without loss
of generality. We note that

(9.18) A = — p'dP/dxs,

where dP/dx; is the pressure gradient in the steady motion. From (9.16),
(9.17) we have

(9.19) AIR < 2GIoIs,  Is> LLAJG.
Substituting from (9.9), (9.14), (9.19) in (9.7), we have
(920) 0’1([22 + )\2112)/1/ < (G)\/V)Illg - [22 (2)\2 -‘I‘ %AQ/GZ) - )\4[12 .
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The expression on the left is negative-definite if
(9.21) GN/v < A28\ + A2/G2)/,

To agree with (1.1) for a circular section, we may define the Reynolds
number R for Poiseuille flow through a general section by

(9.22) R = GS/(2mv),

where S is the area of the section. Then, from (9.20), we may say that
Poiseuille motion in a tube of any section is stable for disturbances of wave-
length I(=2m/\) if

(9.23) R < (S/1)(327%/1* + A?/G?)V12,

where A is related to the pressure-gradient by (9.18) and G is as in (9.10).
For a tube of circular section of radius a this condition, R being asin (1.1), is

(9.24) R < (2wa/l)(1 + 8m2a/i2)1/2,

To obtain stronger conditions for stability, we may return to (9.7) and
pursue the same line of reasoning as that which led us from (6.10) to
(6.26). Thus we may say that Poiseuille motion in a tube of any section is
stable for disturbances of wave-length 2w /N provided that v >vi(\), where vi(\)
is the greatest characteristic value of v making the following equations con-
sistent with the boundary conditions (9.4):

v _ xm) + %i()\/u){ i <ﬁfﬁ> + ‘—930} = 0.

« dxq \0%g 0%y

0
(9.25) (&' — A% <6

10. Poiseuille motion in a tube of circular section with disturbance
having rotational or axial symmetry. We have in (9.24) a sufficient condi-
tion for stability for Poiseuille motion through a tube of circular section.
Since the right-hand side has zero for minimum with respect to variable /,
the condition is a very small step indeed towards the theoretical establish-
ment of the experimental fact (1.2), which remains an outstanding chal-
lenge to mathematicians. The condition (9.24) has at least the merit that
the disturbance is of a general type.

Taylor’s success (§8) in handling the problem of the stability of Couette
motion by means of a disturbance with rotational symmetry leads us to
try the same plan for Poiseuille motion in a tube of circular section. The
results are however disappointing, as we shall now see.

In cylindrical codrdinates the first-order equations of disturbance are
as in (3.19). We note that the variables ¢’, v’ are separated. Putting, as
usual,

(10.1) v = g(r)esttirs,

the second equation of (3.19) gives
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(L—N—o0o/v— i\W/v)g =0,

2 1 d 1
(10.2) L=—+4-————,

dr? r dr &

7,2
W = W0<1 - -—‘>,
a?

with the boundary conditions
(10.3) g=0 for r=0 andfor 7»=a.

Multiplying (10.2) by rgdr, integrating from 0 to ¢, and adding the com-
plex conjugate equation, we see immediately that the real part of ¢ is nega-
tive; thus there is stability as far as v is concerned. Instability, if it occurs,
must arise from the first of (3.19). But this is the single equation (3.21)
for axially symmetric disturbances. Hence the problem of stability for dis-
turbances with rotational symmetry is identical with the problem of stability
for disturbances with axial symmetry.

The axially symmetric disturbance of Poiseuille motion through a tube
of circular section was discussed by Orr [20, p. 135]. His fundamental
equation may be obtained from (9.25): since the disturbance is axially
symmetric, we have

fa = xaf(r)j 0
U=Wy1 — r*/a?, fs0U /dxg

rdf/dr + 2f,

(10.4) sl

It

and substitution in (9.25) gives

2I\W, d
(L =Ny = —— — (%) =0,
(10.5) valr dr
N @ 3 d
L=—+——,
dr? r dr

an equation immediately identified with Orr’s (84) on putting *f =y. The
boundary conditions are f=df/dr=0 for r =a and regularity for »=0. Solv-
ing his equation by a power series and hence calculating the largest char-
acteristic »,(\), Orr was led, by application of the type of argument associ-
ated with equation (6.26), to the conclusion that Poiseuille motion in a
tube of circular section is stable for axially symmetric disturbances of arbitrary
wave-length if

(10.6) R = Woa/v < 180.
(This definition of R is easily seen to be the same as that given by equation

(1.1).) Since this is only a sufficient condition for stability, it does not
conflict with (1.2).
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The problem of axially symmetric disturbances has also been discussed
by Sexl [22, 23]. We shall indicate briefly the nature of his argument, using
a slightly different approach. Introducing in (3.21) the dimensionless quan-
tities
(10.7) t = vt/a?, Y =r/a, 7 = z/a, R = Woa/v,
and then putting
(10.8) Y= f(r)ert e
we obtain for f the differential system
{L—2\—0¢— i\R(1 — r?)} F= 0,

(L —N)f = F,
d? 1 d 1

ar'* ' dr r'?

(10.9)

with the boundary conditions
f=4df/dr =0 for ¢ =1,

(10.10)
/=0 for r = 0.

Here we have a characteristic value problem for o, N\, R. Rejecting one of
the solutions of the first of (10.9) on account of a singularity at ' =0, we
have

(10.11) F =F\(' o,\, R),

a power series in #’. With the usual notation for Bessel functions, let us
multiply the second of (10.9) by 'J,(¢Nr')dr’ and integrate over the range
(0,1). We get

1
(10.12) f 7”]1(i>\7’)F1(7", ag, )\, R)d?" = 0,
0

equivalent to Sexl’s transcendental characteristic equation. It is difficult
to make general deductions from this equation, and Sexl confines his at-
tention to the cases where AR is either very small or very large, and in the
latter case an asymptotic form for F; is used. There is further restriction
to the cases where N is either very small or very large. Sexl found in all
cases considered that the real value of ¢ is negative, and this appears to be
generally accepted (cf. Miiller [24, p. 320]) as a proof that Poiseuille mo-
tion in a tube of circular section is stable for axially symmetric disturb-
ances of any wave-length for any value of the Reynolds number.

11. Plane Couette and plane Poiseuille motions (P.C.M. and P.P.M.).
As remarked earlier, the mathematical complexity of the three-dimensional
problems physically most interesting has led to a concentration of atten-
tion on analogous plane problems, namely, the stability of plane Couette



256 J. L. SYNGE

motion (P.C.M.) and plane Poiseuille motion (P.P.M.), described in §3(c).
The first-order equations of disturbance (for disturbances in the plane of
the motion) are given in (3.28), (3.29). It might appear from the analogy
of G. I. Taylor’s work (§8) that instability should be sought in a disturb-
ance not confined to the plane of the motion, but H. B. Squire [25] has
shown that stability is increased by the introduction of such more general
disturbances. We shall here confine ourselves to disturbances in the plane
of the motion.
We substitute in (3.28), (3.29)

(11.1) Y = f(y)eertire,

where the function f and the constant ¢ are in general complex and the con-
stant \ real and positive without loss of generality. Thus we obtain for f
the ordinary differential equation of the fourth order

LLf = oLf + i\RM],
(11.2) L = d2/dy? — 22,
M = yL for PC.M.; M = (1 — y)L + 2 for P.P.M.
By (3.31) the boundary conditions are
(11.3) f=df/dy =0 for y= + 1.

The system (11.2), (11.3) defines the characteristic value problem: for con-
sistency o, \, R must satisfy a characteristic equation. We recall that R is
the Reynolds number (3.27). It is natural to regard \, R as assigned, and ¢
as the unknown characteristic value. If

(114) g =90t 7:0'2)

then ¢; <0 (for all characteristic values) is a sufficient condition for sta-
bility.

Doubts would be set at rest and much arduous labor saved, if a simple
proof were forthcoming for the following theorem: For any positive values
of the real constants N, R, no characteristic value o of the system (11.2), (11.3)
has a positive real part. Such a theorem would establish the stability of
P.C.M. and P.P.M. under all conditions. This result appears contrary to
physical intuition (because we believe such motions to be unstable for
large R), but it is a result towards which the theory appears to be slowly
moving, and proofs have already been offered for the case of P.C.M. Be-
fore proceeding to discuss these complicated proofs, let us develop some
simple results regarding the characteristic values.

Denoting the complex conjugate as usual by a bar and d/dy by an ac-
cent, we obtain, on multiplying (11.2) by fdy and integrating for the range
(_ 1 ) 1)7
(11.5) o(I2 4+ NU@) = — iNRQ — (I2 + 2\ 2 + M),
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where
1 _ 1
I¢ = | ffdy, 1?2 = | [fidy,
(11.6) N N
2 = [f'f’dy, I = | f"f"dy,
-1 —1
and

0= [ sur vy + [ Ry tor pe,
a1 0= [ (4= W7+ e - 5 = 27y

1
-2 f yf'fdy for P.P.M.

—1
Subtracting its complex conjugate from (11.5), we get
(11.8) oI + NI2) = — IR(Q + Q).
For P.C.M. this gives

(11.9) [ o ARG+ 2y = 0,

and hence (cf. Orr [20, p. 117], Solberg [26, p. 389]),
(11.10) — AR < 03 < AR.
For P.P.M. (11.8) gives

1) [ for+ARW = W}GT + Ny =R [ ffay;

thus the integrand on the left must be positive somewhere in the range,
and hence ¢;> —AR. We can also write (11.11) in the form

1

{os + \R(1 — 92} f'f'dy

(11.12) 1

3¢ [ o+ 2RA = 59 = RSy = 0.
-1

If ¢, >0, so that the first integral is positive, the second integrand must be

negative somewhere in the range, and hence, with the previous result, we
have (cf. Solberg [26, p. 389])

(11.13) — AR < o3 < R/A.
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The inequalities (11.10), (11.13) are interesting inasmuch as they limit o
to strips in the complex plane, but they tell us nothing directly about sta-
bility, since they concern ¢4, not o;.

If we add to (11.5) its complex conjugate, we get

(11.14)  o(I2 + N E) = — 3AR(Q — Q) — (I2 + 2\ 2 + N\ ¢).
It is easily seen that

0 — Q| < 2414,

(11.15)
g=1for PC.M.;q =2 for P.P.M.,
and hence
(11.16) oi(I2 + NI@) < Q\RI I, — (I7 + 2\ + NI 2),

an inequality of the same general type as (6.17), (6.22) ,(9.20).
We can deduce from (11.16) some simple conditions for stability, valid
both for P.C.M. and P.P.M. For any real constants «, (3,

(11.17) f (f + ayf" + Bf")(J + ayf’ + 8f")dy > 0,"

from which we deduce

(11.18) B2 > I2(af — o + 26) + I¢(a — 1),

and hence, from (11.16),

c1B2(I% 4+ N P) < B2ARII, — 12 (2\%6% + off — o2 + 2B)
—I¢\B*+ a— 1).

(11.19)
Therefore o, <0 if

(11.20)  (B*qAR)* < 4(2N%B* + off — a? + 28)(\82 + a — 1),
where «, 8 are any real constants satisfying

(11.21) DB+ aB—at+ 28>0, M4+ a—1>0.

We now make certain choices of «, 8, satisfying (11.21).
For a=8=1, we have ¢, <0 if

(11.22) (gR)? < 8\X(A2 + 1).

For P.P.M. this reads R?<2\*(\*+1), and improves a condition given by
Pekeris [27, p. 66] and also the conditions (7), (8) of Solberg [26].
For a=8=2, we have ¢, <0 if

(11.23) (qR)? < (222 4 1)(4N* + 1)/A2.

We note that, given R, there is stability for very great or very small \,
and that there is stability for arbitrary X if (¢R)? is less than the minimum
of the right-hand side of (11.23).
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For a=B=1/\, we have o, <0 if
(11.24) (gR)? < 8(1 — A2 4 A¥ 4 \4).

The above conditions are very weak, but they possess the merit of sim-
plicity. To strengthen the conditions, we return to (11.14) and consider
the maximum value of the right-hand side, f being arbitrary save for the
boundary conditions (11.3) and a normalizing condition. It is unnecessary
to repeat the same type of reasoning as that which led us to (6.26). Apply-
ing the calculus of variations to the right-hand side of (11.14) and equat-
ing the Lagrange factor to zero, we obtain this result: P.C.M. or P.P.M.
is stable for disturbances of wave-length 2w /N provided that R <R,(\), where
Ri(XN) is the smallest characteristic value of R for which the system
(11.25)  f" — 2" + Nf = \R®, [=f =0 for y=+1

b

is consistent, the function ® being
(11.26) & = — f/ for PC.M.; ® = 2yf'+f for P.P.M.

We observe that we have passed from the original characteristic value
problem (11.2), (11.3) to a new characteristic value problem (11.25). But
whereas a complete consideration of the former might conceivably give a
sufficient condition for instability (some ¢,>0), conclusions drawn from
(11.25) can only be sufficient conditions for stability.

Although derived in a different way, (11.25) contains the fundamental
equations of Orr [20, pp. 125, 131]. The treatments for P.C.M. and
P.P.M. are very different, because for P.C.M. (11.25) is an equation with
constant coefficients and the general solution can be obtained in finite
form. In the case of P.P.M., Orr had recourse to a development of the
solution in power series. Space only permits quotation of Orr’s results:
the steady motion is stable for disturbances of arbitrary wave-length if

(11.27) R <44.3 for PC.M.; R <88 for P.P.M.

R being defined as in (3.27). Orr’s result for P.P.M. was confirmed by
MacCreadie [28] with greater accuracy.

There is however another mode of attack. Instead of multiplying
(11.2) by fdy, as we did to obtain (11.5), let us multiply by Lfdy and in-
tegrate over the range (—1, 1). Adding the complex conjugate equation,
we obtain in the notation of (11.6)

(11.28) (T + 2N 2 + N ¢) = %[f”f”l +f”f”']::il
| = (I¢ + 3NT2 + NI +N1),

the same form for both P.C.M. and P.P.M. Multiplying (11.2) by
exp (eAy)dy, where e= 11, and integrating we obtain
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1
(11.29) LM (" — ef)]iciy = iR | e Mfdy.

-1

Solving these two equations for f’’/(1), f’/(—1) and substituting in
(11.28), the right-hand side becomes a function ¢ of A\, R, f'/(1), f"/(—1)
and of certain integrals involving f, f*, f//, ' taken over the range (—1, 1),
the complex conjugates of these quantities occurring also, since the expres-
sion is real. We now seek the maximum of ¢, when f is arbitrary save for
the boundary conditions (11.3) and for assigned values of f'/(1), f''(—1).
The calculus of variations gives for the maximizing f a differential equation
of the sixth order

(11.30)  f® — 3N /@ + 3N/ — N°f = RF(y, \, (1), f"(—= 1)),

with an obvious notation for derivatives, where

F = ix2 cosech 2\ {f"(1) cosh A(y + 1) — f”(— 1) cosh A(y — 1)}
for PC.M.,

= — 2i\2 y cosech 23 {7”/(1) cosh A(y + 1) — f/(— 1) cosh A(y — 1)},
for P.P.M.

(11.31)

The equation (11.30) is easily solved, and the boundary conditions are such
as to make the solution unique; it is a function of y, \, R, f''(1), f'"(—1).
Substituting it in ¢, and referring to (11.28), we find that for P.P.M.

(1,52 (8 T T NIE) £ (A A+ BRY{OFW) +77(= DF(= 1)
| + (€ + DR) /(O (= 1) + /(O (= D},

where 4, B, C, D are complicated but explicit functions of N\ alone and
f'"(1), f""(—1) are evaluated for that characteristic function to which ¢
corresponds. Hence it follows at once that o, <0 and there is stability if \,
R satisfy

(11.33) A+ BR:< 0, | 4 + BR*| > | C + DR?|.

This method has not been worked out in detail for P.C.M., but the re-
sults for P.P.M. will be reported at the International Congress for Applied
Mechanics, Cambridge, Mass., in 1938. It is found that P.P.M. is stable
for disturbances of arbitrary wave-length if

(11.34) R < 155.

This improves considerably Orr’s result, 88, which was quoted in equation
(11.27).

When approached as above, it is natural to attack P.C.M. and P.P.M.
by a single method. But this disregards an important difference between
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the forms of (11.2) for the two cases. This equation is undoubtedly simpler
for P.C.M ., for then f occurs only in the form Lf, and the equation may be
written

(11.35) ¢’ — N\ = (o0 + ARy)P, ['—Nf=¢,

with the boundary conditions f=f'=0 for v= +1.

This characteristic value problem has been treated by R. von Mises
[3, 4] and L. Hopf [5] in quite different ways. They both reach the same
conclusion, namely, that the real part of ¢ is negative for all real values
of A and R, so that P.C.M. is stable under all conditions, a surprising result
from a physical point of view. We shall now describe these methods briefly.

In the method of von Mises, we multiply the second of (11.35) by
exp (£Ay)dy and integrate, obtaining

1 1

(11.36) f eMvgdy = 0, f eMody = 0.

-1 -1
Instead of considering the original differential system of the fourth order
with four homogeneous boundary conditions, we now consider a system of
the second order, namely, the first of (11.35), with (11.36) instead of
boundary conditions. We already know that the real part of ¢ is negative
if \ is given and R is small enough. Hence, if instability occurs, it will occur
when o passes through a purely imaginary value, ¢ =%0,. In this critical
state we have

(11.37) ¢ — N = io:(1 + Ky)9,

where K(=\R/a,) is real. Hence if P.C.M. is to be unstable under any cir-
cumstances, the system

¢’, - )‘2¢ = U(l + Ky)d’;

(11.38) 1 1
f evpdy = 0, f eMpdy = 0,

—1 —1

must possess a purely imaginary characteristic value o for some choice of the
real constants N\, K. The aim of the argument of von Mises is to prove that
all the characteristic values o of (11.38) are real. He regards (11.38) as the
limit of a set of difference equations. For details, the reader must refer to
the original papers. The essential point is that the characteristic values of
the difference system are finite in number, and if we can account for them
all (with real values) at any stage, then no imaginary characteristic values
can occur in the differential system, since characteristic values for the dif-
ferential system must be limit points of characteristic values for the differ-
ence system. Although the general theory of the method is closely
developed, the application to our particular hydrodynamical problem is
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less full, and it is possible to entertain a doubt as to whether the stability
of P.C.M. under all circumstances is fully established.*

The method of Hopf, arising out a paper by A. Sommerfeld [29], is
quite different. On putting

(11.39) z = (\! + o + i\Ry)/(O\R)?/3,
we transform the first of (11.35) into
(11.40) d%/dz* + 26 = 0,

of which independent solutions are
(U14) i) = 2P HO G, 6a(a) = P Hy®(E),

where the H’s are Hankel functions. The second equation of (11.35) then
reads

(11.42) d*f/dz? + k*f = Ay + Boe,
where ¥*=X2/R and A, B are constants; multiplying by sinkzdz, coskzdz
and integrating from z; to 2z, (the values of z corresponding to y= —1,

y=1), the left-hand sides vanish, and elimination of 4, B from the right-
hand sides gives the characteristic equation

(11.43) f f sin k(z' — 2")¢1(2')¢a(e")dz'dz" = 0,

which involves o, X, R in the limits of integration and in k. Obviously the
deduction of general results from (11.43) is well-nigh impossible; Hopf
found it necessary to limit himself to cases where the argument of the
Hankel functions is either very small or very large. In all cases amenable
to calculation, he found the real part of ¢ negative, and concluded that
P.C.M. is stable under all circumstances, confirming the conclusion of von
Mises. ‘

In view of the theoretical interest of the problem and the complexity
and somewhat incomplete nature of the methods described above, it is to
be hoped that mathematicians will not regard the problem of the stability
of P.C.M. as closed. A simple general proof of stability is greatly to be de-
sired.

The problem of the stability of P.P.M. has not been so fully treated.
We can only mention in passing the work of H. Solberg [26], W. Heisen-
berg [30], and F. Noether [32]. The methods of the last two are asymp-
totic for large R. Heisenberg’s work indicates instability for a range of N
and R, but Noether’s indicates only stability. Recently papers have ap-
peared by S. Goldstein [33] and C. L. Pekeris [27], the latter attempting

* Professor von Mises has informed the writer that he does not regard his own proof of the
stability of P.C.M. as adequate, nor does he accept the proof of Hopf.
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a solution in the form of a power series in R; these papers indicate stability
as far as the calculations go.*

Part III. THE METHOD OF DECREASING POSITIVE-DEFINITE INTEGRALS

12. The method of energy. The method of energy has been more im-
portant historically than might appear from the small space devoted to it
here. Some investigations actually conducted under this head lead to the
same mathematical problems as have already been discussed in Part II,
and it is unnecessary to reconsider them here. We shall show below how
the method of energy is included in the methods of Part II.

We accept as basic the first-order equations of disturbance of §3. For
disturbed motion given by (3.2), we define the energy of the disturbance as
€T’ where

(12.1) T = %pfu{u,’dr,

where dr is an element of volume. As in Part II, we shall consider only
disturbances spatially periodic; then the region of integration in (12.1) is
the cell of periodicity, a region fixed in space. In plane problems, we replace
(12.1) by an integral over an area.

The essential feature of (12.1) is the positive-definite character of the
integrand: if 7/=0, then «#/ =0 everywhere, and the first-order disturb-
ance vanishes. If 7’ remains bounded for all positive values of the time ¢,
then %/ remain bounded almost everywhere, and thus we are led to accept
the boundedness of 7" as a sufficient condition for stability; for distinction
we may call this stability in the mean.

Some writers demand a more stringent condition for stability, namely,
T'—0 as t— . In the applications the actual condition we shall employ is

(12.2) _ dT’/dt <0 for t2 0,

which certainly implies the boundedness of 7, but not necessarily 7'—0
as t— » . We shall accept (12.2) as a sufficient condition for stability in the
mean.

To apply the method we do not have to integrate the equations of dis-
turbance (3.3). By virtue of these equations we can express d7”/dt in terms
of u!, du! /dx;, dp’/dx;, Au! ; if the resulting expression is zero or negative
for arbitrary #; (satisfying the boundary conditions and the equation of
continuity), then (12.2) is satisfied and there is stability in the mean. It is
important to note that this method may give a sufficient condition for sta-
bility, but never a sufficient condition for instability (that is, unbounded

* In a later paper by Pekeris [41] approximate characteristic values are found by replacing
the differential equation (11.2) for P.P.M. by a difference equation. All the approximate values
so found indicate stability.
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T"). We are never able to prove even that d7'/dt>0 for arbitrary u/, be-
cause a sufficiently rapid spatial oscillation in %/ will reverse this inequal-
ity.

We shall now consider the application of the method to Couette motion
and to Poiseuille motion, using (with slight modification) the notation of
§86, 9. We shall assume spatial periodicity in the direction of the xs-axis,
with wave-length 2m/\.

By (3.3) we have

o~ 1dT’/dt

fu{ (ou! /ot)dr
— f ul U(0u! /0x;)dT — fu{u,-’ U;/dx;)dr

(12.3)

— p—lf ul (ap’/axl)dr + yf MIIAM{dT,

U; being the velocity in steady motion. The integrals extend over the por-
tion of the fluid between the planes x3=0, x;=27/\. Using Green’s theo-
rem, with the condition #/ =0 on the walls, and also the condition of
spatial periodicity, we find that the first and third integrals vanish, and so

(12.4) p 4T /dt = — fu.;’u,’ (0U;/0x;)dr — vf(au{ /0x;)(0uf /ox;)dT.
Let us put

(125) u: = fi(xl, X2, t)e"““ + ﬂ(xl, X, t)e—”‘“,
the functions f; being complex and A real and positive. Defining
(126) 0 = afﬁ/axg,

we have by the last of (3.3) f;=140/\, and since U ;/dx; =0 in both Couette
and Poiseuille motions, we obtain from (12.4)

Carjar = = 3037) [ (U/o3) (s + Fefi)dS

(12.7) + %i()\/v)f (0U3/0%a)(faf — fub)dS

— (I + NP +NTE 4+ €IE),

where C is a positive constant and I, I5, J3, I3 are defined as in (6.7), all
integrals being taken over the section x; = const. The boundary conditions
on the walls are

(12.8) fa=0=0.

In the case of Couette motion, the second integral on the right-hand
side of (12.7) vanishes since U;=0, and we are left with an expression for



HYDRODYNAMICAL STABILITY 265

CdT'/dt formally the same as the right-hand side of (6.10). Hence the
problem of finding conditions under which d7”/dt is zero or negative for
arbitrary f,, satisfying (12.8), is the same as that of finding conditions un-
der which the o; of (6.10) is zero or negative for arbitrary f,, satisfying
(6.5). Thus for Couette motion nothing new is to be learned from the sub-
stitution of the method of energy for that of the exponential time-factor,
except of course the fact that under those conditions of §6 which make
01 =0, we have stability in the mean.

In the case of Poiseuille motion, the first integral on the right-hand side
of (12.7) vanishes, since U, =0, and we are left with an expression formally
the same as the right-hand side of (9.7). The remarks made above apply
equally here; the method of energy coalesces with the method of the ex-
ponential time-factor, insofar as the latter makes use of (9.7).

Actually the method of the exponential time-factor seems to be the
more powerful method: first, it is capable of establishing instability, which
the method of energy can never do; secondly, it admits deductions other
than (6.10) and (9.7), which represent the only products of the method
of energy; thirdly, it is conceivable that in (6.10) and (9.7) we might make
use of the fact that the f, are characteristic functions, whereas in (12.7)
the f, are arbitrary functions. The only compensating disadvantage in the
method of the exponential time-factor lies in the question of expansions in
terms of characteristic functions. The method of energy leads without com-
plication to conditions for stability in the mean.

Through lack of appreciation of the true situation, illegitimate deduc-
tions have been made from (12.4) or (12.7) or an equivalent equation. Sup-
pose we take some definite u/, satisfying the boundary and periodicity
conditions and the equation of continuity, and substitute in (12.4). A nega-
tive value for dT’/dt so obtained is of no significance whatever as far as
stability is concerned. It is only when d7"/dt <0 for arbitrary u! (subject
to the boundary and periodicity conditions and the equation of continuity)
that we can deduce stability in the mean. On this point H. A. Lorentz [34]
(for P.C.M.) and F. R. Sharpe [35] (for P.P.M. and for Poiseuille motion
in a tube of circular section) were not clear, and stated results which can-
not be maintained.

We shall now briefly consider the method of energy as applied to plane
motions, using the notation of §3(c) and §11. Instead of (12.4) we have

(12.9) p~WdT’/dt = — f ta U (OU o/dx5)dS — vf (0ud /3x5)(Oud /925)dS,

the integrals being taken over a rectangle of periodicity in the plane of the
motion. We have for both P.C.M.and P.P.M.
(1210) U, = U(xz), Uy = 0, 141’ = —61//’/0962, Mg’ =6|//'/6x1,

and so, putting
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(12.11) x=x1/h, yv=2x/b, ¢ = f(y,e?s _*_J?(y, ez,

where \ is real and positive, we obtain

CdT'/dt = 3i(h/v) | (@U/dy)(ff' — ff')dy
— (T2 + 2N 2 4+ NI @)

in the notation of (11.6), the accents on f, f denoting /3y and C being a
positive constant. Since U = Uy for P.C.M. and U = Uo(1 —9?) for P.P.M .,
it follows that

(12.13)  CdT'/dt = — Li\R(Q — Q) — (I + 222 + NI ¢),

where Q is as in (11.7) and R as in (3.27). The right-hand side of (12.13)
is the same formally as the right-hand side of (11.14), and hence the
method of energy coalesces with the method of the exponential time-factor,
insofar as the latter employs (11.14).

13. The method of vorticity. The integral of energy (12.1) is not the
only positive-definite integral which may be used to give sufficient condi-
tions for stability in the mean. An irrotational disturbance u/ is neces-
sarily inconsistent with the stringent boundary conditions (#/ =0). Let us
write £/ for the vorticity vector of the disturbance, so that

(13.1) gl = Jeijduy [9x;

(e:;r being the permutation symbol); then the conditions £/ =0 imply
u{ =0. Hence it is fitting to consider the integral of vorticity

(12.12)

(13.2) |4 =f£££{dr,

integrated over the cell of spatial periodicity, and to assert that a steady
motion is stable in the mean if V is bounded, ¢>0, or more particularly, it

(13.3) dv/dt <0 for ¢=0.

We shall here confine our attention to the plane disturbances of P.C.M-
and P.P.M., so that the vorticity integral is

1
(13.4) V= If (0ug /dx1 — du{ /dx,)%dS,

integrated over the rectangle of periodicity.* Introducing the notation of
(12.10), (12.11) we obtain
1
(13.5) 2CV = LfLfdy, L = 9%/dy? — \%,
-1
* This integral has been used by Southwell and Chitty [36]; it may be remarked that their
statement (equation (17), p. 230) that this integral is constant for the disturbance of an inviscid
liquid flowing with a general velocity profile is not correct; cf. [37, equation (16)].
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where C is a positive constant. If we substitute for ¥’ from (12.11) in
(3.28), (3.29), we get

(13.6) 9Lf/or = LLf — i\RM,
where M is asin (11.2) and 7 as in (3.26). Hence

1

1 _ . ;
CdV/dr = 5 {Lf(LLF + i\RMF) + LF(LLf — i\RM[)}dy
(13.7) 1 -
= ST+ TN = R LR T L),

where the accents on f, f denote 8/dy and I,, Iy, I,, I; are as in (11.6). But
we have here on the right precisely the right-hand side of (11.28), and so
apparently the method of vorticity coalesces with the method of the ex-
ponential time-factor. However, to use (11.28) we required (11.29), which
followed from the fact that f is a characteristic function. If in (13.7) f is an
arbitrary function of y (save for f=f"=0 for y= +1), then (11.29) is not
available. However, (11.29) may be established in connection with (13.7)
by considerations based on the regularity of the motion (cf. G. Hamel
[38], and also [39]), so that the method of vorticity does coalesce with the
method of the exponential time-factor.

CONCLUSION

In conclusion we may pick out what appear to be the outstanding chal-
lenges to mathematicians in the field of hydrodynamical stability:

(i) A simple proof, not involving elaborate computations, that plane
Couette motion is stable under all circumstances.

(ii) A similar treatment for plane Poiseuille motion, if in fact it is stable
under all circumstances.

(iii) The establishment of some inequality defining a condition under
which Toiseuille motion in a tube of circular section is unstable. Any
attempt ‘to fix a precise critical value for the Reynolds number must
inevitably involve elaborate calculation. But we might hope for a simple
method to establish that under certain circumstances at least one of a set
of characteristic values has a positive real part.
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