Let L be a language with one ternary relation R. We define a function called predimension on any finite structure in this language in the following way:

$$\delta(A) = |A| - |R^A|.$$

We also define the notion of strong (or closed) embedding for two finite structures of this language as follows: $A \leq^* B$ iff $A \subseteq B$ and for every B' between A and B and not equal to A we have:

$$\delta(A) < \delta(B').$$

The class of all finite L-structures (including the empty set), in which empty is closed, has the amalgamation, joint embedding, and hereditary property; hence, it has a generic model M using the results of Fraise and Hrushovski.

We know that M is unstable and undecidable. We will prove for this structure a quantifier elimination up to certain formulas called closure formulas. This result could also be used to answer the question of finite model property for this structure. (Received September 16, 2014)