Define a \(k \)-convex permutation \(\pi : [n] \rightarrow [n] \) to be a bijection obeying the condition \(2\pi(i) \geq \pi(i - 1) + \pi(i + 1) - k \) for all \(i \in \{2, 3, \ldots, n - 1\} \) for fixed \(k \geq 0 \), and denote the number of \(k \)-convex permutations of length \(n \) by \(f_k(n) \). We attempt to determine \(f_k(n) \) for \(k = 0, 1, \) and \(2 \), cases under which these permutations satisfy nice properties; in particular, they are consecutive 213 and 312 avoiding. We show that \(f_0(n) \) is precisely 8 for \(n > 4 \) and demonstrate, for \(k = 1, 2 \), a method of exhaustively constructing \(k \)-convex permutations. We construct an infinite ”descendant digraph” for \(k = 1 \) and \(k = 2 \), and use the transfer matrix method with generating functions to determine \(f_1(n) \), give a partial solution for \(f_2(n) \), and demonstrate that it is possible to give arbitrarily tight exponential bounds in both cases.

Similarly, we define \(k \)-convex words on a \(p \)-alphabet to be functions \(g : [n] \rightarrow [p] \) satisfying \(2g(i) \geq g(i - 1) + g(i + 1) - k \) for all \(i \in \{2, 3, \ldots, n - 1\} \). We demonstrate that it is possible to find a generating function \(G_{p,k} \) for any values of \(p, k \), and show that the number of 0-convex words is eventually constant in \(n \) for any \(p \), giving an expression for this constant in \(p \) related to the integer partition numbers. (Received September 09, 2014)