Bonnie C. Jacob and Jobby Jacob* (jxjsma@rit.edu). Graph rankings based on l_p norms.

For a graph G, a function $f : V(G) \rightarrow \{1, 2, \ldots, k\}$ is a k-ranking, if $f(u) = f(v)$ implies that every $u - v$ path contains a vertex x such that $f(x) > f(u) = f(v)$. The rank number of a graph G is the minimum value of k such that G has a k-ranking. Hence the rank number of a graph is obtained by applying the l_∞ norm (max norm) to the vertex labels. Jamison and Narayan studied the rank numbers of graphs based on the l_1 norm (sum norm).

In this talk, we will look at rank numbers of graphs based on l_p norms for $0 < p < \infty$. We will compare rank numbers based on l_p norms for $0 < p < \infty$ to the traditional rank numbers for different classes of graphs. We will show that there are graphs such that the set of traditional optimal rankings and the set of l_p optimal rankings are disjoint. (Received September 12, 2014)