Given two noncommuting matrices, A and B, it is well known that AB and BA have the same trace. This extends to cyclic permutations of products of A’s and B’s. Thus, for example, $AAAAAB, BAAAAA, BBAAAA, AABAAA, AABBA$ and $ABABBA$ all have the same trace. This means that if A and B are fixed matrices then products of four A’s and two B’s can have 3 possible traces. For 2×2 matrices A and B we show that there are restrictions on the relative sizes of these traces. For example, if $M_1 = A^4B^2$, $M_2 = A^3BAB$ and $M_3 = A^2BA^2B$ then it is never the case that $\text{Trace}(M_1) > \text{Trace}(M_3) > \text{Trace}(M_2)$. For larger collections of A’s and B’s, forbidden orders become much more common. In this talk, these and similar results are discussed. (Received September 16, 2014)