1106-05-2400 Curtis Clark* (curtis.clark@morehouse.edu), Department of Mathematics, Morehouse College, 830 Westview Drive, Atlanta, GA 30314. On 2 – 2 Graph Achievement Games. Preliminary report.

Let $F$ be a graph with no isolated vertices. The 2 – 2 $F$-achievement game on the complete graph $K_n$ is described as follows. Player $A$ first colors two edges of $K_n$ green. Then Player $B$ colors two different edges of $K_n$ red. They continue alternatively coloring the edges with Player $A$ coloring two edges green and Player $B$ coloring two edges red. The graph $F$ is achievable on $K_n$ if Player $A$ can make a copy of $F$ in his color. The minimum $n$ such that $F$ is achievable on $K_n$ is the 2 – 2 achievement number of $F$, $a(F)$. The 2 – 2 move number of $F$, $m(F)$, is the least number of edges that must be colored by Player $A$ to make $F$ on the complete graph with $a(F)$ vertices. We determine $a(F)$ and $m(F)$ for some small graphs, paths, and cycles. Then we compare these results with those for 1 – 1, 2 – 1, and 1 – 2 graph achievement games. (Received September 16, 2014)