Binomial coefficients count lattice paths contained in rectangles, whereas Catalan numbers (and their generalizations, the rational Catalan numbers) count lattice paths contained in certain triangles. The q-binomial coefficients enumerate lattice paths based on either their inversion count or their major index; these two combinatorial statistics lead to two distinct q-analogues of Catalan numbers. A long-standing open problem is to find a combinatorial statistic to explain the natural algebraic q-analogue of the rational Catalan numbers. We conjecture such a combinatorial statistic along with a novel combinatorial interpretation for the q-binomial coefficients. We give a bijective proof that the new formula for q-binomial coefficients implies the conjecture for q-Catalan numbers. (Received August 24, 2014)