In this talk, we explore patterns in random walks in discrete time on the real number line. In such a random walk, we choose \(n - 1 \) i.i.d. random variables that serve as the steps of the walk, \(X_1, X_2, \ldots, X_{n-1} \). The walk is then the series \(Z_0, Z_1, \ldots, Z_{n-1} \) where \(Z_0 = 0 \) and \(Z_k = \sum_{i=1}^{k} X_i \). A set of \(n \) consecutive values in a random walk is associated to a permutation in \(S_n \) using relative ordering. With this setup, it is easy to see that not all patterns occur with equal probability; however, there are some instances where two patterns occur with equal probability given any probability distribution. A permutation and its reverse-complement will always have the same probability of occurring, but this is not the only case. The permutations 612435 and 354612 form a nontrivial example of this phenomenon.

We are interested in permutations \(\pi, \tau \in S_n \) such that the probability \(\pi \) occurs in a random walk is equal to the probability \(\tau \) occurs in a walk, regardless of the probability distribution of the steps. Our goal is to completely characterize the classes of permutations with equal probabilities. (Received September 08, 2014)