Let G be a simple, connected, algebraic group over \mathbb{C}, B a Borel subgroup, and $T \subset B$ a maximal torus. Let Q be the root lattice, Λ the weight lattice, and d the least common multiple of the coefficients of the highest root θ of \mathfrak{g} written in terms of the simple roots. Consider the diagonal action of G on the projective variety $X = G/B \times G/B \times G/B$. Then, for any triple (λ, μ, ν) of dominant integral weights there is a G-linearized line bundle \mathcal{L} on X. Such a line bundle is said to descend to the GIT quotient $\pi : X(\mathcal{L})^{ss} \to X(\mathcal{L})//G$ if there exists a line bundle $\hat{\mathcal{L}}$ on $X(\mathcal{L})//G$ such that $\mathcal{L}|_{X(\mathcal{L})^{ss}} \cong \pi^* \hat{\mathcal{L}}$. We show \mathcal{L} descends if $\mu, \nu \in d\Lambda$ and $\lambda + \mu + \nu \in dQ$. These conditions are useful in describing how the tensor product multiplicity $\dim[V(\lambda) \otimes V(\mu) \otimes V(\nu)]^G$ varies with respect to the triple (λ, μ, ν). (Received September 15, 2014)