A classic result in noncommutative ring theory states that a ring R is an $n \times n$ matrix ring if, and only if, R contains n^2 matrix units $\{e_{ij}\}_{1 \leq i,j \leq n}$, in which case $R \cong M_n(S)$ where S is a subring of R^n that can be described completely in terms of the matrix units. A lesser known result states that a ring R is an $(m + n) \times (m + n)$ matrix ring, so $R \cong M_{m+n}(S)$ for some ring S, if, and only if, R contains three elements a, b, and f satisfying the two relations $af^m + f^nb = 1$ and $f^{m+n} = 0$. In this talk, we investigate algebras over a commutative ring (or field) with elements c and f satisfying the two relations $c^if^m + f^nc^j = 1$ and $f^{m+n} = 0$. Surprisingly little is known here about the structure of these algebras and about the underlying ring S for most cases of the integers $i, j, m,$ and n. Questions whether S is non-trivial or not turn out to be surprisingly difficult to answer, let alone describing the structure of these algebras or of S in general. (Received September 11, 2014)