The nonlinear wave equation
\[\Box u = F(u, u', u'') \] (1)
in \(\mathbb{R}^{n+1} \), \(n \geq 3 \), was shown by Klainerman to have a small-data global solution when \(F \) satisfies the so-called null condition, which imposes an algebraic cancellation on nonlinearities in the direction of the light cone. We examine scalar Hamiltonian null forms from the perspective of Birkhoff normal form transformations, producing a canonical transformation \(\tau \) which removes the quadratic terms from the Hamiltonian of (1). This enables us to reproduce the results of Klainerman, but also clarifies the relationship between the null condition and three-wave resonance, preserves the Hamiltonian structure of the problem, and establishes a formalism that holds the potential to extend the existing body of results on null forms. (Received September 15, 2014)