We consider the traveling fronts of the reaction diffusion equation:

$$u_t + (-\Delta)^s u = f(u), \quad \text{in} \; \mathbb{R} \times \mathbb{R},$$

for $f \in C^1(\mathbb{R})$. We show the nonexistence of traveling fronts in the combustion model with fractional Laplacian $(-\Delta)^s$ when $s \in (0, 1/2]$. Our method can be used to give a direct and simple proof of the nonexistence of traveling fronts for the usual Fisher-KPP nonlinearity. Also we prove the existence and nonexistence of traveling waves solutions for different ranges of the fractional power s for the generalized Fisher-KPP type model. When considering the Allen-Cahn type nonlinearity, we show the approach of the solution to the traveling front for a large range of initial value problems. (Received September 17, 2014)