Let K be a complete, algebraically closed, non-Archimedean valued field, and let $\phi \in K(z)$ with $\deg(\phi) \geq 2$. In two recent articles, R. Rumely introduced the function $\text{ordRes}_\phi(x)$ on the Berkovich line and a canonical probability measure ν_ϕ (the crucial measure) supported on the interior of the Berkovich line. What can be said of the convergence of the corresponding objects attached to the iterates of ϕ? We answer this question by showing that, suitably normalized, the functions $\text{ordRes}_{\phi^n}(x)$ converge to the diagonal values of the Arakelov-Green’s function $g_\phi(x, x)$, and that the measures ν_{ϕ^n} equidistribute to the invariant measure μ_ϕ. (Received September 16, 2014)