An operator system is a closed subspace of some $B(H)$, where $B(H)$ is a space of bounded linear operators on a Hilbert Space H, such that the operator system is closed under the adjoint operation and contains the identity operator I. In the complex case it was then shown by C. Webster and S. Winkler that for operator systems with complex-valued entries, that any operator system is completely order isomorphic to a space of continuous matrix affine functions on a compact matrix convex set. A natural question then arises of whether this property will hold for operator systems with real number entries. We give concrete representations of real and complex two-dimensional operator systems in M_2, and elaborate on the relationship between these operator systems and two-dimensional spaces of continuous matrix affine functions on a compact matrix convex set. (Received September 15, 2014)