Homotopy transfer is a simple consequence of the Goldman-Millson Theorem. Let $(A, d_A, \{\mu_k\})$ be an A_∞-algebra over a field of characteristic 0, (V, d_V) a cochain complex, and $\phi: V \to A$ a chain map which induces an isomorphism on cohomology. The Homotopy Transfer Theorem says that there exists an A_∞ structure on V, and a A_∞-quasi-isomorphism $\Phi: (V, d_V, \{\nu_k\}) \to (A, d_A, \{\mu_k\})$ lifting the chain map ϕ. Moreover, the A_∞-structure on V and lift of ϕ is unique up to homotopy, in the strongest possible sense. We show that these facts follow simply and directly from a homotopical analog of the Goldman-Millson Theorem, a classical result from deformation theory. This result is a small advertisement for recent joint work (arXiv:1407.6735) with V. Dolgushev on the homotopy theory of homotopy algebras (See also arXiv:1406.1751.) (Received September 16, 2014)