A classical braid is a set of n strings passing between two horizontal bars. These strings may interact with one another but must always travel in the downward direction. If the two horizontal bars are brought together and each pair of string ends are glued together in order, the resulting structure will be a knot or a link which we call the closure of the braid.

J.W. Alexander showed that any oriented classical link can be represented as the closure of a braid. In addition, it is well-known that two braids have isotopic closures if and only if they are related by braid isotopy and a finite series of the so-called Markov’s moves. These two properties of braids are known as the Alexander and Markov Theorems. Analogous theorems have been proved for the set of virtual links as well as for the set of singular links.

In this talk we first introduce the virtual singular braid monoid via generators and relations. We then prove Alexander and Markov-type theorems for virtual singular links. (Received September 15, 2014)