Stochastic tropical geometry is the study of linear functionals of random tropical varieties. It is an exciting new field at the interface of algebraic geometry, probability and combinatorics, with connections to many others. In this work, we study the simplest possible case: the number of zeroes of a random tropical polynomial.

Specifically, if a tropical polynomial has coefficients independent and identically distributed according to some distribution F, then its number of zeroes satisfies a central limit theorem. The scaling is governed by how fast F decays near 0. This can be seen as a local universality result for zeros of random tropical polynomials.

Our proof draws on connections between random partitions, renewal theory and random polytopes. In this talk, I sketch the main proof ideas and discuss open questions in the field of stochastic tropical geometry.

Joint work with Francois Baccelli. (Received September 07, 2014)