Multi-scale analyses and multiresolutions in multivariate signal analysis offer fast algorithms which also have strong localization properties. The latter feature makes them useful as wavelet algorithms as well; i.e., for building recursive basis constructions from filter banks and multi-resolutions in Hilbert spaces, yielding much better pointwise approximation properties than traditional Fourier bases. In the talk we present a new approach to subdivision of signals into frequency bands, applicable to modern-day wireless transmission. We present a representation theoretic framework for perfect reconstruction filter-banks: via a representation theory create the Hilbert spaces H, and subspaces in H, in such a way that ”non-overlapping frequency bands” correspond to orthogonal subspaces in H; or equivalently to systems of orthogonal projections. Different frequency bands must exhaust the signals for the entire system, the orthogonal projections add to the identity operator in H. We select special families of commuting orthogonal projections in H via an iteration of the initial generators and repeated subdivision sequences. (Received September 11, 2014)