The usual concept of an energy cascade that has a unique associated dissipation scale is an oversimplification. Aside from the fact that self-similar scaling for higher-order structure functions terminates at different dissipation scales, back in 1996, L'vov and Procaccia noted an additional anomaly; starting from an n^{th}-order generalized structure function, consisting of a product of velocity differences, each between two different points, when all velocity difference separations have length scale R and one velocity difference separation is reduced to a smaller scale r, the crossover to dissipation range will occur at the scale $\ell_n(R)$ which is R-dependent. The fixed point λ_n such that $\ell_n(\lambda_n) = \lambda_n$ gives the standard dissipation scale associated with the n^{th}-order standard structure functions. In my talk, I will make note of an additional anomaly. If, instead of reducing one velocity difference separation, we reduce p velocity difference separations to scale r, that defines a different dissipation scale function $\ell_{np}(R)$ and a different fixed-point λ_{np}. The new anomaly is that λ_{np} is not independent of p, as a result of intermittency corrections. (Received September 08, 2014)