It is worth underlying that in exact science the interpretation of a variable is established on the basis of a mathematical equation and not using philosophical statements. In particular the argument of the equation determines the exact physical significance of the result. Take, for instance, the time derivative: \(y = dx/dt \). The significance that \(y \) has in the world depends on \(x \); e.g. if \(x \) is the space \(s \), then we obtain the linear velocity \(v = ds/dt \); if \(x \) is the angular displacement \(\alpha \), then we obtain the angular velocity \(\omega = d\alpha/dt \). It is evident how philosophical starting points are inappropriate to establish the meaning of probability and I propose two theorems in [1]. The former is the theorem of large numbers, which holds that \(P(A_n) \) can be controlled in the physical reality, and thus \(P(A_n) \) is a real quantity. The second theorem – called theorem of a single number – demonstrates that the probability of a single experiment \(P(A_1) \) cannot be experienced in the world, thus \(P(A_1) \) does not exist in the world as a real quantity. However, people is very concerned with \(P(A_1) \) and we can assign a personal value to \(P(A_1) \). [1] P. Rocchi – Janus-Faced Probability – Springer (2014). (Received September 10, 2014)